Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x (km/h) là vận tốc của người đi xe đạp từ A đến B (x >0)
x + 5 là vận tốc là vận tốc lúc đi từ B về A
Thời gian mà người đó đi từ A đến B: \(\frac{60}{x}\) (h)
Thời gian mà người đó đi từ B về A: \(\frac{60}{x+5}\) (h)
Vì thời gian lúc về ít hơn thời gian đi là 1 giờ nên ta có phương trình:
\(\frac{60}{x}-\frac{60}{x+5}=1\) (ĐKXĐ: \(x\ne0\); \(x\ne-5\))
\(\Leftrightarrow\frac{60x+300-60x}{x\left(x+5\right)}=\frac{x^2+5x}{x\left(x+5\right)}\)
\(\Leftrightarrow x^2+5x-300=0\)
\(\Leftrightarrow x^2-15x+20x-300=0\)
\(\Leftrightarrow\left(x-15\right)\left(x+20\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=15\left(nhan\right)\\x=-20\left(loai\right)\end{cases}}\)
Vậy vận tốc của người đó đi từ A đến B là 15km/h
Gọi x (km/h) là vận tốc của người đi xe đạp từ A đến B (x >0)
x + 5 là vận tốc là vận tốc lúc đi từ B về A
Thời gian mà người đó đi từ A đến B: \(\frac{60}{x}\) (h)
Thời gian mà người đó đi từ B về A: \(\frac{60}{x+5}\) (h)
Vì thời gian lúc về ít hơn thời gian đi là 1 giờ nên ta có phương trình:
\(\frac{60}{x}-\frac{60}{x+5}=1\) (ĐKXĐ: \(x\ne0\); \(x\ne-5\))
\(\Leftrightarrow\frac{60x+300-60x}{x\left(x+5\right)}=\frac{x^2+5x}{x\left(x+5\right)}\)
\(\Leftrightarrow x^2+5x-300=0\)
\(\Leftrightarrow x^2-15x+20x-300=0\)
\(\Leftrightarrow\left(x-15\right)\left(x+20\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=15\left(nhan\right)\\x=-20\left(loai\right)\end{cases}}\)
Vậy vận tốc của người đó đi từ A đến B là 15km/h
gọi x là thời gian đi thì thời gian về là x+18[phút]
gọi y là quãng đường ab[km]
theo bài ra ta có hệ phương trình
\(25\cdot x=y\)
\(\left(25-5\right)\cdot\left(x+18\right)=y\)
từ hệ trên ta có \(25\cdot x=\left(x+18\right)\cdot20\)
suy ra x=72
đổi 72 phút = 1.2 giờ
suy ra quãng đường ab dài: \(25\cdot1,2=30km\)
Bài 2: Gọi vận tốc của cano khi nước yên lặng là \(x\left(km/h\right)\left(x>0\right)\)
Thời gian cano đi và về bằng thời gian người đi bộ đi được 8km và bằng:\(\dfrac{8}{4}=2\left(h\right)\)
Thời gian cano chạy đi : \(\dfrac{24}{x+4}\left(h\right)\)
Thời gian cano chạy về: \(\dfrac{24-8}{x-4}=\dfrac{16}{x-4}\left(h\right)\)
Ta có pt: \(\dfrac{24}{x+4}+\dfrac{16}{x-4}=2\Rightarrow24x-96+16x+64=2x^2-32=0\Leftrightarrow20x-x^2=0\Leftrightarrow x\left(20-x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=20\end{matrix}\right.\)
Vì vận tốc của cano > 0 nên x = 20.Vậy vận tốc của cano khi nước yên lặng là 20km/h
Gọi vtoc người đó đi từ A -> B là x (km/h) (x>0)
vận tốc người đó đi từ B về A là x+5 (km/h)
tgian người đó đi từ A đến B là \(\dfrac{60}{x}\) (h)
tgian người đó đi từ B về A là \(\dfrac{60}{x+5}\)(h)
Theo bài ta có pt
\(\dfrac{60}{x}\)-1=\(\dfrac{60}{x+5}\)
==> 60.(x+5) -x.(x+5) = 60x
<=> 60x +300 - x2-5x - 60x = 0
<=> 300-x2-5x=0 <=> x2+5x -300 =0 ( a= 1 , b=5 , c=-300 )
pt có \(\Delta=\) 25-4.1.(-300) = 1225 ==> \(\sqrt{\Delta}\)=35
==> pt có 2 nghiệm
x1= 15 (t/m đk của ẩn ) , x2=-20 (ko t/m đk )
Vậy vận tốc của người đó đi từ A đến B là 15 km/h
- vì đang hk giải \(\Delta\) nên mk lm cách này nhé!!
a) Ta có: \(P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x+\sqrt{x}}{\sqrt{x}}+\dfrac{2x-2}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)
\(=x-\sqrt{x}-\sqrt{x}-1+2\sqrt{x}+2\)
\(=x+1\)