K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2021

5: \(=\dfrac{1}{x-y}\cdot x^3\cdot\left(x-y\right)^2=x^3\left(x-y\right)\)

AH
Akai Haruma
Giáo viên
2 tháng 3 2021

Lời giải:

a) ĐK: $x\geq 0; y\geq 0; x\neq y$

\(A=\left[\frac{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}{\sqrt{x}-\sqrt{y}}-\frac{(\sqrt{x}-\sqrt{y})(x+\sqrt{xy}+y)}{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}\right]:\frac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)

\(=\left(\sqrt{x}+\sqrt{y}-\frac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\right).\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)

\(=\frac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}.\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}=\frac{\sqrt{xy}}{x-\sqrt{xy}+y}\)

b) \(1-A=\frac{(\sqrt{x}-\sqrt{y})^2}{x-\sqrt{xy}+y}>0\) với mọi $x\neq y; x,y\geq 0$

$\Rightarrow A< 1$

 

Bài 1: 

a: \(A=\left(\sqrt{x}+\sqrt{y}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)

\(=\dfrac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)

\(=\dfrac{\sqrt{xy}}{x-\sqrt{xy}+y}\)

b: \(\sqrt{xy}>=0;x-\sqrt{xy}+y>0\)

Do đó: A>=0

\(A=\left(\dfrac{4\sqrt{xy}+x-2\sqrt{xy}+y}{2\left(x-y\right)}\right)\cdot\dfrac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\dfrac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)

\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\left(x-y\right)}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\dfrac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)

\(=\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}-\sqrt{y}}=1\)

22 tháng 8 2021

a) \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\dfrac{x\sqrt{x}+y\sqrt{y}-\left(x-y\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\dfrac{x\sqrt{x}+y\sqrt{y}-x\sqrt{x}+x\sqrt{y}+y\sqrt{x}-y\sqrt{y}}{\sqrt{x}+\sqrt{y}}=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\sqrt{xy}\)b) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\sqrt{\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\left|\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right|=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)( do \(x\ge1\))

a: Ta có: \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)

\(=x-\sqrt{xy}+y-x+2\sqrt{xy}-y\)

\(=\sqrt{xy}\)

b: Ta có: \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\)

\(=\dfrac{ \left|\sqrt{x}-1\right|}{\left|\sqrt{x}+1\right|}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

AH
Akai Haruma
Giáo viên
1 tháng 12 2021

Lời giải:

\(A=\frac{x+y}{\sqrt{xy}}: \frac{x-y}{\sqrt{xy}}=\frac{x+y}{\sqrt{xy}}.\frac{\sqrt{xy}}{x-y}=\frac{x+y}{x-y}\)

\(=\frac{1+a+1-a}{1+a-(1-a)}=\frac{2}{2a}=\frac{1}{a}\)