Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tớ chỉ biết làm phần d thôi
Vì p là số nguyên tố nên \(\Rightarrow\) p có dạng 3k,3k+1,3k+2
+) Nếu p =3k \(\Rightarrow\)p =3 thì p+2=3+2=5
p+4=3+4=7 là số nguyên tố (chọn)
+) Nếu p=3k+1 \(\Rightarrow\) p+2 =(3k+3) \(⋮\)3 là hợp số (loại)
+) Nếu p=3k+2 \(\Rightarrow\)p+4=(3k+6)\(⋮\)3 là hợp số (loại)
Vậy số cần tìm là 3
Chỉ cần 1 cách của nhuyễn thanh tùng có thể giải quyết cả 4 câu nên 3 câu còn lại e tự làm tiếp nhé
Vì p là số nguyên tố nên p thuộc { 2,3,5,7 ... }
Nếu p = 2 thì p + 94 và p + 1994 là số chẵn ( loại )
Nếu p = 3 thì p + 94 = 97 ,p+1994 = 1997 là hai số nguyên tố ( thỏa mãn )
Nếu p > 3 thì p không chia hết cho 3 => p : 3 dư 1 hoặc 2
Nếu p : 3 dư 1 thì p = 3k + 1
Khi đó p + 1994 = 3k + 1 + 1994
= 3k + 1995
= 3 x ( k + 665 ) là số chia hết cho 3, là hợp số ( loại )
Nếu p : 3 dư 2 thì p = 3q + 2
Khi đó p + 94 = 3q + 2 + 94
= 3q + 96
= 3x ( q + 32 ) là số chia hết cho 3 , là hợp số ( loại )
Vậy p = 2
TL:
a)Để P+2;P+6; P+8 là số nguyên tố thì \(P=5\)
hc tốt
Thử p = 2 => 2 + 94 = 96 là hợp số => Loại
Thử p = 3 => 3 + 94 = 97 và 3 + 1994 = 1997 là số nguyên tố => Chọn
Nếu p > 3 thì có 2 trường hợp
- Nếu p = 3k + 1 => p + 1994 là hợp số
- Nếu p = 3k + 2 => p + 94 là hợp số
Vậy số nguyên tố cần tìm là 3
số nguyên tố p không thể có dạng 3n + 1 (tức chia 3 dư 1) vì lúc đó
p + 1994 = 3n + 1995 = 3*(n + 665) là tích 2 số đều > 2 nên là hợp số. Số nguyên tố p cũng không thể có dạng 3n + 2 (tức chia 3 dư 2) vì lúc đó p + 94 = 3n + 96 = 3*(n + 32) là tích 2 số đều > 2 nên là hợp số. Vậy p phải chia hết cho 3, mà p là số nguyên tố nên p = 3.
=> chỉ có 1 số nguyên tố thỏa mãn đk
Mọi số tự nhiên đều viết được dưới dạng 5k,5k+1,5k+2,5k+3,5k+4
Nếu p = 5k+1 suy ra p+14=5p+15=5﴾p+3﴿chia hết cho 5 ﴾loại﴿
Nếu p = 5k+2 suy ra p+8=5p+10=5﴾p+2﴿ chia hết cho 5 ﴾loại﴿
Nếu p = 5k+3 suy ra p+12=5p+15=5﴾p+3﴿ chia het cho 5 ﴾loại﴿
Nếu p = 5k+4 suy ra p+6= 5p+10=5﴾p+2﴿chia hết cho 5 ﴾loại
Vậy p chỉ có thể bằng 5k.mà p là nguyên tố nên p =5. Vậy p=5