K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài làm

a) ( x - 4 )2 - 25 = 0

<=> ( x - 4 - 5 )( x - 4 + 5 ) = 0

<=> (  x - 9 )( x + 1 ) = 0

<=> \(\orbr{\begin{cases}x-9=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=9\\x=-1\end{cases}}}\)

Vậy tập nghiệm phương trình S = { -2; 9 }

b) ( x - 3 )2 - ( x + 1 )2 = 0

<=> ( x - 3 - x - 1 )( x - 3 + x + 1  ) = 0

<=> -4( 3x - 2 ) = 0

<=> 3x - 2 = 0

<=> \(x=\frac{2}{3}\)

Vậy \(x=\frac{2}{3}\)là nghiệm phương trình.

c) ( x2 - 4 )( 2x + 3 ) = ( x2 - 4 )( x - 1 ) 

<=> ( x2 - 4 )( 2x + 3 ) - ( x2 - 4 )( x - 1 ) = 0

<=> ( x2 - 4 )( 2x + 3 - x - 1 ) = 0

<=> ( x2 - 4 )( x + 2 ) = 0

<=> \(\orbr{\begin{cases}x^2-4=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=-2\end{cases}}}\)

Vậy tập nghiệm phương trình là S = { 2; -2 }

d) ( 3x - 7 )2 - 4( x + 1 )2 = 0

<=> ( 3x - 7 )2 - [ 2( x + 1 ) ] 2 = 0

<=> [ ( 3x - 7 ) - 2( x + 1 ) ][ ( 3x - 7 ) + 2( x + 1 )] = 0

<=> ( 3x - 7 - 2x - 2 )( 3x - 7 + 2x + 1 ) = 0

<=> ( x - 9 )( 5x - 6 ) = 0

<=> \(\orbr{\begin{cases}x-9=0\\5x-6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=9\\x=\frac{6}{5}\end{cases}}}\)

Vậy tập nghiệm phương trình S = { 9; 6/5 }

# Học tốt #

a) Ta có: \(2x^3+5x^2-3x=0\)

\(\Leftrightarrow x\left(2x^2+5x-3\right)=0\)

\(\Leftrightarrow x\left(2x^2+6x-x-3\right)=0\)

\(\Leftrightarrow x\left[2x\left(x+3\right)-\left(x+3\right)\right]=0\)

\(\Leftrightarrow x\left(x+3\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{0;-3;\dfrac{1}{2}\right\}\)

b) Ta có: \(2x^3+6x^2=x^2+3x\)

\(\Leftrightarrow2x^2\left(x+3\right)=x\left(x+3\right)\)

\(\Leftrightarrow2x^2\left(x+3\right)-x\left(x+3\right)=0\)

\(\Leftrightarrow x\left(x+3\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{0;-3;\dfrac{1}{2}\right\}\)

c) Ta có: \(x^2+\left(x+2\right)\left(11x-7\right)=4\)

\(\Leftrightarrow x^2+11x^2-7x+22x-14-4=0\)

\(\Leftrightarrow12x^2+15x-18=0\)

\(\Leftrightarrow12x^2+24x-9x-18=0\)

\(\Leftrightarrow12x\left(x+2\right)-9\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(12x-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\12x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\12x=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{4}\end{matrix}\right.\)

Vậy: \(S=\left\{-2;\dfrac{3}{4}\right\}\)

25 tháng 1 2021

Trong đó có nhiều phương trình kiến thức cơ bản mà nhỉ? Ít nâng cao, bạn lọc ra câu nào k làm đc thôi chứ!

5 tháng 9 2021

a. (x - 22) - 1 = 0

<=> x - 4 - 1 = 0

<=> x = 5

b. 4 - (x - 2)2 = 0

<=> 22 - (x - 2)2 = 0

<=> (2 - x + 2)(2 + x - 2) = 0

<=> x(4 - x) = 0

<=> \(\left[{}\begin{matrix}x=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

 

5 tháng 9 2021

d. (3x - 2)2 - (2x + 3)2 = 5(x + 4)(x - 4)

<=> (3x - 2 - 2x - 3)(3x - 2 + 2x + 3) = 5(x2 - 16)

<=> (x - 5)(5x + 1) = 5x2 - 80

<=> 5x2 + x - 25x - 5 = 5x2 - 80

<=> 5x2 - 5x2 + x - 25x = -80 + 5

<=> -24x = -75

<=> x = \(\dfrac{25}{8}\)

a/ \(x=\dfrac{-5}{12}\)

b/ \(x\approx-1,9526\)

c/ \(x=\dfrac{21-i\sqrt{199}}{10}\)

d/ \(x=\dfrac{-20}{13}\)

25 tháng 7 2021

a) (x-2)3+6(x+1)2-x3+12=0

⇒ x3-6x2+12x-8+6(x2+2x+1)-x3+12=0

⇒ x3-6x2+12x-8+6x2+12x+6-x3+12=0

⇒ 24x+10=0

⇒ 24x=-10

⇒ x=-5/12

1) Ta có: \(\left(3-x^2\right)+6-2x=0\)

\(\Leftrightarrow3-x^2+6-2x=0\)

\(\Leftrightarrow-x^2-2x+9=0\)

\(\Leftrightarrow x^2+2x-9=0\)

\(\Leftrightarrow x^2+2x+1=10\)

\(\Leftrightarrow\left(x+1\right)^2=10\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=\sqrt{10}\\x+1=-\sqrt{10}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{10}-1\\x=-\sqrt{10}-1\end{matrix}\right.\)

Vậy: \(S=\left\{\sqrt{10}-1;-\sqrt{10}-1\right\}\)

2) Ta có: \(5\left(2x-1\right)+7=4\left(2-x\right)+2\)

\(\Leftrightarrow10x-5+7=8-4x+2\)

\(\Leftrightarrow10x+4x=8+2+5-7\)

\(\Leftrightarrow14x=8\)

\(\Leftrightarrow x=\dfrac{4}{7}\)

Vậy: \(S=\left\{\dfrac{4}{7}\right\}\)

16 tháng 12 2022

1: \(\Leftrightarrow2x^2-10x-3x-2x^2=0\)

=>-13x=0

=>x=0

2: \(\Leftrightarrow5x-2x^2+2x^2-2x=13\)

=>3x=13

=>x=13/3

3: \(\Leftrightarrow4x^4-6x^3-4x^3+6x^3-2x^2=0\)

=>-2x^2=0

=>x=0

4: \(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)

=>-8x=6-14=-8

=>x=1

16 tháng 12 2022

`1)2x(x-5)-(3x+2x^2)=0`

`<=>2x^2-10x-3x-2x^2=0`

`<=>-13x=0`

`<=>x=0`

___________________________________________________

`2)x(5-2x)+2x(x-1)=13`

`<=>5x-2x^2+2x^2-2x=13`

`<=>3x=13<=>x=13/3`

___________________________________________________

`3)2x^3(2x-3)-x^2(4x^2-6x+2)=0`

`<=>4x^4-6x^3-4x^4+6x^3-2x^2=0`

`<=>x=0`

___________________________________________________

`4)5x(x-1)-(x+2)(5x-7)=0`

`<=>5x^2-5x-5x^2+7x-10x+14=0`

`<=>-8x=-14`

`<=>x=7/4`

___________________________________________________

`5)6x^2-(2x-3)(3x+2)=1`

`<=>6x^2-6x^2-4x+9x+6=1`

`<=>5x=-5<=>x=-1`

___________________________________________________

`6)2x(1-x)+5=9-2x^2`

`<=>2x-2x^2+5=9-2x^2`

`<=>2x=4<=>x=2`

24 tháng 1 2018

a) đặt \(\left(x^2+x\right)\)là \(y\)

ta có: \(3y^2-7y+4\)\(=0\)

<=>\(\left(3y-4\right)\left(y-1\right)=0\)

còn lại bạn tự xử nhé 

2 tháng 1 2018

a)(x - 4)2 - 25= 0

<--> ( x - 4)2 - 52 = 0

<--> ( x - 4 - 5 )( x - 4 + 5 ) = 0

<--> ( x - 4 - 5 ) = 0 <--> x - 9 = 0 <--> x = 9

hoặc

<--> ( x - 4 + 5 ) = 0 <--> x + 1 = 0 <--> x = -1

b)bài này tương tự bài a

2 tháng 1 2018

\(a,\left(x-4\right)^2-25=0\)

\(\Rightarrow\left(x-4-5\right)\left(x-4+5\right)=0\)

\(\Rightarrow\left(x-9\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-9=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=9\\x=-1\end{matrix}\right.\)

\(b,\left(x-3\right)^2-\left(x+1\right)^2=0\)

\(\Rightarrow\left(x-3-x-1\right)\left(x-3+x+1\right)=0\)

\(\Rightarrow-4\left(2x-2\right)=0\)

\(\Rightarrow2\left(x-1\right)=0\)

\(\Rightarrow x-1=0\)

\(\Rightarrow x=1\)

\(c,\left(x^2-4\right)\left(2x+3\right)=\left(x^2-4\right)\left(x-1\right)\)

\(\Rightarrow2x+3=x-1\)

\(\Rightarrow2x-x=-1-3\)

\(\Rightarrow x=-4\)

\(d,\left(3x-7\right)^2-4\left(x+1\right)^2=0\)

\(\Rightarrow\left(3x-7\right)-\left[2\left(x+1\right)\right]^2=0\)

\(\Rightarrow\left(3x-7\right)^2-\left(2x+2\right)^2=0\)

\(\Rightarrow\left(3x-7-2x-2\right)\left(3x-7+2x+2\right)=0\)

\(\Rightarrow\left(x-9\right)\left(5x-5\right)=0\)

\(\Rightarrow5\left(x-9\right)\left(x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-9=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=9\\x=1\end{matrix}\right.\)

22 tháng 12 2020

Rảnh rỗi thật sự .-.

undefined

11 tháng 1 2023

\(8,1-\left(x-6\right)=4\left(2-2x\right)\)

\(\Leftrightarrow1-x+6=8-8x\)

\(\Leftrightarrow-x+8x=8-1-6\)

\(\Leftrightarrow7x=1\)

\(\Leftrightarrow x=\dfrac{1}{7}\)

\(9,\left(3x-2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-5\end{matrix}\right.\)

\(10,\left(x+3\right)\left(x^2+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\varnothing\end{matrix}\right.\)

 

11 tháng 1 2023

`8)1-(x-5)=4(2-2x)`

`<=>1-x+5=8-6x`

`<=>5x=2<=>x=2/5`

`9)(3x-2)(x+5)=0`

`<=>[(x=2/3),(x=-5):}`

`10)(x+3)(x^2+2)=0`

  Mà `x^2+2 > 0 AA x`

 `=>x+3=0`

`<=>x=-3`

`11)(5x-1)(x^2-9)=0`

`<=>(5x-1)(x-3)(x+3)=0`

`<=>[(x=1/5),(x=3),(x=-3):}`

`12)x(x-3)+3(x-3)=0`

`<=>(x-3)(x+3)=0`

`<=>[(x=3),(x=-3):}`

`13)x(x-5)-4x+20=0`

`<=>x(x-5)-4(x-5)=0`

`<=>(x-5)(x-4)=0`

`<=>[(x=5),(x=4):}`

`14)x^2+4x-5=0`

`<=>x^2+5x-x-5=0`

`<=>(x+5)(x-1)=0`

`<=>[(x=-5),(x=1):}`