Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy : \(4=2^2;9=3^2;....;10000=100^2\) nên A có \(\left(100-2\right):1+1=99\) số hạng
Ta có :
\(\frac{3}{4}< \frac{4}{4}=1\)
\(\frac{8}{9}< \frac{9}{9}=1\)
\(\frac{15}{16}< \frac{16}{16}=1\)
\(......\)
\(\frac{9999}{10000}< \frac{10000}{10000}=1\)
\(\Rightarrow A=\frac{3}{4}+\frac{8}{9}+....+\frac{9999}{10000}< 1+1+...+1\)(Vì A có 99 số hạng nên cũng có 99 số 1 tương ứng)
\(\Rightarrow A< 99\)
\(A=\frac{3}{4}+\frac{8}{9}+...+\frac{9999}{10000}\)
\(A=1-\frac{1}{4}+1-\frac{1}{9}+...+1-\frac{1}{10000}\)
\(A=99-\left(\frac{1}{4}+\frac{1}{9}+...+\frac{1}{10000}\right)\)
Vì biểu thức trong dấu ngoặc đơn luôn lớn hơn 0 nên A<99
Vậy A<99
Ta có :
\(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)
\(A=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{10000}\right)\)
\(A=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\right)\)
\(A=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)>99\)\(\left(1\right)\)
gọi B là biểu thức trong ngoặc
Lại có :
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(B< 1-\frac{1}{100}< 1\)
\(\Rightarrow A=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)>99-\left(1-\frac{1}{100}\right)>98\)
\(\Rightarrow A>98\)\(\left(2\right)\)
từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(98< A< 99\)
vậy A không phải là số tự nhiên
phần bạn đánh dấu (1) thì A<99 vì A= 99 trừ đi một số mà
\(\frac{3}{4}\)*\(\frac{8}{9}\)*\(\frac{15}{16}\)********\(\frac{9999}{10000}\)
= \(\frac{1\cdot3}{2^2}\)*\(\frac{2\cdot4}{3^2}\)********\(\frac{99\cdot101}{100^2}\)
= \(\frac{1\cdot2\cdot3\cdot4\cdot\cdot\cdot\cdot99}{2\cdot3\cdot4\cdot\cdot\cdot\cdot100}\)* \(\frac{3\cdot4\cdot5\cdot\cdot\cdot101}{2\cdot3\cdot4\cdot\cdot\cdot100}\)
= \(\frac{1}{100}\)*\(\frac{101}{2}\)=\(\frac{101}{200}\)
Ta có: A = \(\frac{3}{8}\). \(\frac{8}{9}\).\(\frac{15}{16}\). ... .\(\frac{9999}{10000}\)
\(\Rightarrow\) A = \(\frac{1.3}{2^2}\).\(\frac{2.4}{3^2}\). \(\frac{3.5}{4^2}\). ... . \(\frac{99.101}{100^2}\)
\(\Rightarrow\) A = \(\frac{1.111}{2.100}\)= \(\frac{111}{200}\)
Vậy: A = \(\frac{111}{200}\).
\(M=\frac{3}{4}.\frac{8}{9}.....\frac{9999}{10000}=\frac{1\cdot3}{2\cdot2}\cdot\frac{2\cdot4}{3\cdot3}\cdot....\cdot\frac{99\cdot101}{100\cdot100}=\frac{1\cdot3\cdot2\cdot4\cdot...\cdot99\cdot101}{2^2\cdot3^2\cdot...\cdot100^2}=\frac{1\cdot101}{2\cdot100}=\frac{101}{200}\)Vậy M = \(\frac{101}{200}\)
\(M=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}....\frac{9999}{10000}\)
\(M=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}....\frac{99.101}{100^2}=\frac{1.2.3...99}{2.3.4...100}.\frac{3.4.5...101}{2.3.4...100}=\frac{1}{100}.\frac{101}{2}=\frac{101}{200}\)
\(\frac{3}{4}x\frac{8}{9}x\frac{15}{16}x...x\frac{9999}{10000}\)
\(=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}.....\frac{99.101}{100^2}\)
\(=\frac{1.3.2.4.3.5.....99.101}{2.2.3.3.4.4.....100.100}\)
\(=\frac{1.2.3.....99}{2.3.4.....100}.\frac{3.4.5.....101}{2.3.4.....100}\)
\(=\frac{1}{100}.\frac{101}{2}=\frac{101}{200}\)
Ủng hộ mk nha,chúc bn học tốt!!!
A=1.3/2^2.2.4/3^2.3.5/4^2...99.101/100.100
A=(1.2.3...99/2.3.4...100).(3.4.5...101/2.3.4...100)
A=1/100.101/2
A=101/200
200.A=200.101/200
200.A=101
\(C=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{9999}{10000}\)
\(C=\frac{1\cdot3}{2\cdot2}\cdot\frac{2\cdot4}{3\cdot3}\cdot\frac{3\cdot5}{4\cdot4}\cdot...\cdot\frac{99\cdot101}{100\cdot100}\)
\(C=\frac{1\cdot2\cdot3\cdot...\cdot99}{2\cdot3\cdot4\cdot...\cdot100}\cdot\frac{3\cdot4\cdot5\cdot...\cdot101}{2\cdot3\cdot4\cdot...\cdot100}\)
\(C=\frac{1}{100}\cdot\frac{101}{2}\)
\(C=\frac{101}{200}\)
\(C=\frac{3}{4}x\frac{8}{9}x\frac{15}{16}x......x\frac{9999}{10000}\)
\(C=\frac{1.3}{2^2}x\frac{2.4}{3^2}x\frac{3.5}{4^2}x....x\frac{99.101}{100^2}\)
\(C=\frac{1.3.2.4.3.5.......99.101}{2^2.3^2.4^2.......100^2}\)
\(C=\frac{1.2.3.......99}{2.3.4....100}x\frac{3.4.5.....101}{2.3.4......100}\)
\(C=\frac{1}{100}.\frac{101}{2}=\frac{1.101}{100.2}=\frac{101}{200}\)
Ủng hộ mk nha!!!!