Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow2.\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{\left(2x-2\right).2x}\right)=\frac{1}{8}.2\).2
\(\Rightarrow\frac{2}{2.4}+\frac{2}{4.6}+...\frac{2}{\left(2x-2\right).2x}=\frac{1}{4}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2x-2}-\frac{1}{2x}=\frac{1}{4}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{2x}=\frac{1}{4}\)
\(\Rightarrow\frac{1}{2x}=\frac{1}{4}\Rightarrow\frac{1}{2x}=\frac{1}{2.2}\)
\(\Rightarrow x=2\)
\(\frac{3}{2}+\frac{3}{14}+\frac{3}{15}+...+\frac{6}{\left(x-3\right).x}=\frac{96}{49}\)
\(\frac{6}{\left(1.2\right).2}+\frac{6}{\left(2.7\right).2}+...+\frac{6}{\left(x-3\right).x}=\frac{96}{49}\)
\(\frac{6}{1.4}+\frac{6}{4.7}+...+\frac{6}{\left(x-3\right).x}=\frac{96}{49}\)
\(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{\left(x-3\right).x}=\frac{96}{49.2}\)
\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{\left(x-3\right)}-\frac{1}{x}=\frac{96}{98}\)
=> \(1-\frac{1}{x}=\frac{48}{49}\)
=> \(\frac{1}{x}=\frac{1}{49}\)
=> \(x=49\)
\(\frac{5}{4}+\frac{6}{7}\div\frac{3}{1}\)
\(=\frac{5}{4}+\frac{6}{7}\times\frac{1}{3}\)
\(=\frac{5}{4}+\frac{2}{7}\)
\(=\frac{43}{28}=1\frac{15}{28}\)
(2/3×x-1/3)=2/3+1/3
(2/3×x-1/3)=3/3
2/3×x=3/3+1/3
2/3×x=4/3
x=4/3:3/2
x=4/3×2/3
x=8/9
\(\frac{1}{3}x+\frac{2}{5}\left(x-1\right)=0\)
\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x-\frac{2}{5}=0\)
\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x=0+\frac{2}{5}\)
\(\Leftrightarrow x\left(\frac{1}{3}+\frac{2}{5}\right)=\frac{2}{5}\)
\(\Leftrightarrow x\left(\frac{5}{15}+\frac{6}{15}\right)=\frac{2}{5}\)
\(\Leftrightarrow\frac{11}{15}x=\frac{2}{5}\)
\(\Leftrightarrow x=\frac{2}{5}\div\frac{11}{15}\)
\(\Leftrightarrow x=\frac{6}{11}\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{49}{50}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{49}{50}\)
\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{49}{50}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{49}{50}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{49}{50}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{49}{50}\div2\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{49}{50}\times\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{49}{100}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{49}{100}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{50}{100}-\frac{49}{100}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{100}\)
\(\Leftrightarrow x+1=100\)
\(\Leftrightarrow x=100-1\)
\(\Leftrightarrow x=99\)
1/
a) \(C=\frac{4}{7}.\frac{3}{5}.\frac{7}{4}.\left(-20\right).\frac{5}{6}\)
\(=\left(\frac{4}{7}.\frac{7}{4}\right).\left(\frac{3}{5}.\frac{5}{6}\right).\left(-20\right)\)
\(=\frac{1}{2}.\left(-20\right)\)
\(=-10\)
2/ \(B=\frac{2^2}{3}.\frac{3^2}{8}.\frac{4^2}{15}.\frac{5^2}{24}.\frac{6^2}{35}.\frac{7^2}{48}.\frac{8^2}{63}.\frac{9^2}{80}\)
\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}.\frac{5.5}{4.6}.\frac{6.6}{5.7}.\frac{7.7}{6.8}.\frac{8.8}{7.9}.\frac{9.9}{8.10}\)
\(=\frac{2.3.4.5.6.7.8.9}{1.2.3.4.5.6.7.8}.\frac{2.3.4.5.6.7.8.9}{3.4.5.6.7.8.9.10}\)
\(=9.\frac{2}{10}=9.\frac{1}{5}=\frac{9}{5}\)
-3/24-40/24=-43/24
\(a)\frac{-1}{8}+\frac{-5}{3}\) \(b)\frac{-6}{35}.\frac{-49}{54}\)
\(=\frac{-3}{24}+\frac{-40}{24}\) \(=\frac{\left(-6\right).\left(-49\right)}{35.54}\)
\(=\frac{-43}{24}\) \(=\frac{7}{45}\)
\(c)\frac{-4}{5}:\frac{3}{4}\)
\(=\frac{-4}{5}.\frac{4}{3}\)
\(=\frac{-16}{15}\)