K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C E N M D O 1 2 1 2

Bài làm

a) Ta có tia phân giác của góc \(\widehat{ABC}\)

=> \(\widehat{B}_1=\widehat{B_2}\)

Ta có tia phân giác của góc \(\widehat{ACB}\)

=> \(\widehat{C}_1=\widehat{C_2}\)

Mà \(\widehat{ABC}=\widehat{ACB}\)( Tam giác ABC cân tại A )

=>\(\widehat{B}_1=\widehat{B_2}=\widehat{C_1}=\widehat{C_2}\)

Xét tam giác ACN và tam giác  ABM có:

\(\widehat{B}_1=\widehat{C_1}\)( Chứng minh trên )

AB = AC ( tam giác ABC cân tại A )

\(\widehat{BAC}\)là góc chung

=> Tam giác ACN = tam giác  ABM ( g.c.g )                     ( đpcm )

b) ~ Mik nghĩ đề bài bn sai ở chỗ câu b. pk là A là trung điểm của DE mới phải ~

Vì \(\widehat{B}_1=\widehat{C_1}\)( Chứng minh trên )

Ta có: \(\widehat{B}_1\)đối diện với cạnh AD                                         ( 1 )   

       Vì \(\widehat{C_1}\)đối diện với cạnh EA                                      ( 2 )   

Từ  ( 1 ) ( 2 ) => AD = AE

=> A là trung điểm của DE                                         ( đpcm )

# Hok_tốt #

a) Tự vẽ 

b) Vì CI là phân giác ACB 

=> ACI = BCI = \(\frac{60°}{2}\)= 30° 

Vì IE // BC (gt)

=> ICB = EIC = 30° ( so le trong) 

d) Vì DE//BC (gt)

=> AED = ACB = 60° ( đồng vị) 

Xét ∆AIE ta có : 

AIE + AEI + IAE = 180° 

=> IAK = 180° - 90° - 60° = 30° 

Ta có : 

AEI = KEC = 60° ( đối đỉnh) 

Xét ∆EKC ta có : 

EKC + KCE + KEC = 180° 

=> KCE = 180° - 90° - 60° = 30° 

=> EAI = KCE = 30° 

Mà 2 góc này ở vị trí so le trong 

=> AH//KC

e) Xét ∆AHC ta có : 

ACH + CAH + AHC = 180° 

=> CAH = 180°  - 90° - 60° = 30° 

31 tháng 7 2019

pham vu anh tuan oi ban co the ve hinh va viet gia thiet cho mik dc ko .lm on!!!

1 tháng 4 2019

a, xét t.giác ABM và t.giác ACM có:

                 AB=AC(gt)

                 AM cạnh chung

=> t.giác ABM=t.giác ACM(CH-CGV)

24 tháng 10 2015

1) Gọi số vở của lớp 7A; 7B; 7C lần lượt là: a; b; c  (quyển)

Theo bài cho ta có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\) và (a + c) - b = 36

Áp dụng t/c của dãy tỉ số bằng nhau ta có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{\left(a+c\right)-b}{\left(2+4\right)-3}=\frac{36}{3}=12\)

=> a = 12.2 = 24; b = 12.3 = 36; c = 12.4 = 48

Vậy...