Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: (2x-3)(3x+6)>0
=>(2x-3)(x+2)>0
=>x<-2 hoặc x>3/2
b: (3x+4)(2x-6)<0
=>(3x+4)(x-3)<0
=>-4/3<x<3
c: (3x+5)(2x+4)>4
\(\Leftrightarrow6x^2+12x+10x+20-4>0\)
\(\Leftrightarrow6x^2+22x+16>0\)
=>\(6x^2+6x+16x+16>0\)
=>(x+1)(3x+8)>0
=>x>-1 hoặc x<-8/3
f: (4x-8)(2x+5)<0
=>(x-2)(2x+5)<0
=>-5/2<x<2
h: (3x-7)(x+1)<=0
=>x+1>=0 và 3x-7<=0
=>-1<=x<=7/3
ảnh ko theo trật tự và bị thiếu nên mk sẽ gửi lại 1 tấm nx và mong bn thông cảm cho
a: (2x-3)(3x+6)>0
=>(2x-3)(x+2)>0
=>x<-2 hoặc x>3/2
b: (3x+4)(2x-6)<0
=>(3x+4)(x-3)<0
=>-4/3<x<3
c: (3x+5)(2x+4)>4
\(\Leftrightarrow6x^2+12x+10x+20-4>0\)
\(\Leftrightarrow6x^2+22x+16>0\)
=>\(6x^2+6x+16x+16>0\)
=>(x+1)(3x+8)>0
=>x>-1 hoặc x<-8/3
f: (4x-8)(2x+5)<0
=>(x-2)(2x+5)<0
=>-5/2<x<2
h: (3x-7)(x+1)<=0
=>x+1>=0 và 3x-7<=0
=>-1<=x<=7/3
a) A(x) = f(x) + g(x)
= (3x4 - 5 + 2x5 - 6x3 + 2x2 + 4x) + (3x - x2 + 5 - 2x5 - 3x4 + 6x3)
= 3x4 - 5 + 2x5 - 6x3 + 2x2 + 4x + 3x - x2 + 5 - 2x5 - 3x4 + 6x3
= x2 + 7x
Vậy A(x) = x2 + 7x
b) Đặt A(x) = 0, ta có:
A(x) = x2 + 7x = 0
=> x(x + 7) = 0
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+7=0\Rightarrow x=-7\end{matrix}\right.\)
Vậy nghiệm của A(x) là x = 0 hoặc x = -7
a) \(\left|4-x\right|+2x=3\)
<=> \(\left|4-x\right|=3-2x\)
<=> \(\orbr{\begin{cases}4-x=3-2x\left(x\le4\right)\\x-4=3-2x\left(x>4\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-1\left(tm\right)\\3x=7\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-1\\x=\frac{7}{3}\left(ktm\right)\end{cases}}\)
Vậy x = -1
b) \(\left|x-7\right|+2x+5=6\)
<=> \(\left|x-7\right|=1-2x\)
<=> \(\orbr{\begin{cases}x-7=1-2x\left(đk:x\ge7\right)\\x-7=2x-1\left(đk:x< 7\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}3x=8\\x=-6\left(tm\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{8}{3}\left(ktm\right)\\x=-6\left(tm\right)\end{cases}}\)
Vậy x = -6
c) \(3x-\left|2x+1\right|=2\)
<=> \(\left|2x+1\right|=3x-2\)
<=> \(\orbr{\begin{cases}2x+1=3x-2\left(đk:x\ge-\frac{1}{2}\right)\\2x+1=2-3x\left(đk:x< -\frac{1}{2}\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=3\left(tm\right)\\5x=1\end{cases}}\)
<=> \(\orbr{\begin{cases}x=3\\x=\frac{1}{5}\left(ktm\right)\end{cases}}\)
Vậy x = 3
d) \(\left|x+2\right|-x=2\)
<=> \(\left|x+2\right|=x+2\)
<=> \(\orbr{\begin{cases}x+2=x+2\left(đk:x\ge-2\right)\\x+2=-x-2\left(x< -2\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}0x=0\\2x=-4\end{cases}}\)
<=> 0x = 0 (luôn đúng) và x = -2 (ktm)
Vậy x \(\ge\)-2
e) \(\left|x-3\right|=21\)
<=> \(\orbr{\begin{cases}x-3=21\\3-x=21\end{cases}}\)
<=> \(\orbr{\begin{cases}x=24\\x=-18\end{cases}}\)
Vậy x = 24 hoặc x = -18
f) \(\left|2x+3\right|-\left|x-3\right|=0\)
<=> \(\left|2x+3\right|=\left|x-3\right|\)
<=> \(\orbr{\begin{cases}2x+3=x-3\\2x+3=3-x\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\3x=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=0\end{cases}}\)
Vậy x thuộc {-6; 0}
g) Ta có: \(\left|x+\frac{1}{8}\right|\ge0\forall x\)
\(\left|x+\frac{2}{8}\right|\ge0\forall x\)
\(\left|x+\frac{5}{8}\right|\ge0\forall x\)
=> VT = \(\left|x+\frac{1}{8}\right|+\left|x+\frac{2}{8}\right|+\left|x+\frac{5}{8}\right|\ge0\forall x\)
=> VP \(\ge0\) => \(4x\ge0\) => \(x\ge0\)
Do đó: \(x+\frac{1}{8}+x+\frac{2}{8}+x+\frac{5}{8}=4x\)
<=> \(3x+1=4x\) <=> \(x=1\left(tm\right)\)
Vậy x = 1
h) \(\left|x-2\right|-\left|2x+3\right|-x=-2\)
<=> \(\left|x-2\right|-\left|2x+3\right|=x-2\)(*)
Lập bảng xét dấu:
x -3/2 2
x - 2 2 - x | 2 - x 0 x - 2
2x + 3 -2x - 3 0 2x + 3 | 2x + 3
Xét x < -3/2 => pt (*) trở thành: 2 - x + 2x + 3 = x - 2
<=> x + 5 = x - 2 <=> 0x = -7 (vô lí)
Xét -3/2 \(\le\) x < 2 => pt (*) trở thành: 2 - x - 2x - 3 = x - 2
<=> 4x = 1 <=> x = 1/4 ((tm)
Xét x \(\ge\) 2 => pt (*) trở thành x - 2 - 2x - 3 = x - 2
<=> 2x = -3 <=> x = -3/2 (ktm)
Vậy x = 1/4
i) |2x - 3| - x = |2 - x|
<=> |2x - 3| - |2 - x| = x (*)
Lập bảng xét dấu
x 3/2 2
2x - 3 3 - 2x 0 2x - 3 | 2x - 3
2 - x 2 - x | 2 - x 0 x - 2
Xét x < 3/2 => pt (*) trở thành: 3 - 2x - 2 + x = x
<=> 2x = 1 <=> x = 1//2 ((tm)
Xét \(\frac{3}{2}\le x< 2\)=> pt (*) trở thành: 2x - 3 - 2 + x = x
<=> 2x = 5 <=> x = 5/2 (ktm)
Xét x \(\ge\)2 ==> pt (*) trở thành: 2x - 3 - x + 2 = x
<=> 0x = -5 (vô lí)
Vậy x = 1/2
k) 2|x - 3| - |4x - 1| = 0
<=> 2|x - 3| = |4x - 1|
<=> \(\orbr{\begin{cases}2\left(x-3\right)=4x-1\\2\left(x-3\right)=1-4x\end{cases}}\)
<=> \(\orbr{\begin{cases}2x-6=4x-1\\2x-6=1-4x\end{cases}}\)
<=> \(\orbr{\begin{cases}2x=-5\\6x=7\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{5}{2}\\x=\frac{7}{6}\end{cases}}\) Vậy ...
a, x=-505
b, x=35/8 hoac -37/8
nhung cau con lai thi tong tu
a) Ta có: \(\dfrac{4}{5}-3\left|x\right|=\dfrac{1}{5}\)
\(\Leftrightarrow3\left|x\right|=\dfrac{4}{5}-\dfrac{1}{5}=\dfrac{3}{5}\)
\(\Leftrightarrow\left|x\right|=\dfrac{1}{5}\)
hay \(x\in\left\{\dfrac{1}{5};-\dfrac{1}{5}\right\}\)
b) Ta có: \(4x-\dfrac{1}{2}x+\dfrac{3}{5}x=\dfrac{4}{5}\)
nên \(\dfrac{41}{10}x=\dfrac{4}{5}\)
hay \(x=\dfrac{8}{41}\)
c) Ta có: \(\left(2x-8\right)\left(10-5x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-8=0\\10-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=8\\5x=10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
d) Ta có: \(\dfrac{3}{4}+\dfrac{1}{4}\left|2x-1\right|=\dfrac{7}{2}\)
\(\Leftrightarrow\dfrac{1}{4}\left|2x-1\right|=\dfrac{7}{2}-\dfrac{3}{4}=\dfrac{14}{4}-\dfrac{3}{4}=\dfrac{11}{4}\)
\(\Leftrightarrow\left|2x-1\right|=11\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=11\\2x-1=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=12\\2x=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-5\end{matrix}\right.\)
a: =>|5/4x-7/2|=|5/8x+3/5|
=>5/4x-7/2=5/8x+3/5 hoặc 5/4x-7/2=-5/8x-3/5
=>5/8x=41/10 hoặc 15/8x=29/10
=>x=164/25 hoặc x=116/75
b: =>3:|x/4-2/3|=6-21/5=9/5
=>|1/4x-2/3|=5/3
=>1/4x-2/3=5/3 hoặc 1/4x-2/3=-5/3
=>1/4x=7/3 hoặc 1/4x=-1
=>x=28/3 hoặc x=-4
c: \(\Leftrightarrow\left\{{}\begin{matrix}x>=0\\\left(2x-x-9\right)\left(2x+x+9\right)=0\end{matrix}\right.\Leftrightarrow x=9\)
e: =>|2x-7|=2x-7
=>2x-7>=0
=>x>=7/2
a)Tử: \(x^5-2x^4+2x^3-4x^2-3x+6\)
\(=x^5+2x^3-3x-2x^4-4x^2+6\)
\(=x\left(x^4+2x^2-3\right)-2\left(x^4+2x^2-3\right)\)
\(=\left(x-2\right)\left(x^4+2x^2-3\right)\)
\(=\left(x-2\right)\left[x^4-x^2+3x^2-3\right]\)
\(=\left(x-2\right)\left[x^2\left(x^2-1\right)+3\left(x^2-1\right)\right]\)
\(=\left(x-2\right)\left(x^2-1\right)\left(x^2+3\right)\)
\(=\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x^2+3\right)\)
Mẫu: \(x^2+2x-8=x^2-2x+4x-8\)
\(=x\left(x-2\right)+4\left(x-2\right)\)
\(=\left(x-2\right)\left(x+4\right)\)
Suy ra \(A=\dfrac{\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x^2+3\right)}{\left(x-2\right)\left(x+4\right)}=\dfrac{\left(x-1\right)\left(x+1\right)\left(x^2+3\right)}{x+4}\)
b)\(A=0\Rightarrow\dfrac{\left(x-1\right)\left(x+1\right)\left(x^2+3\right)}{x+4}=0\)
\(\Rightarrow\left(x-1\right)\left(x+1\right)\left(x^2+3\right)=0\)
Dễ thấy: \(x^2+3\ge3>0\forall x\) (vô nghiệm)
Nên \(\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
A có nghĩa khi \(x+4\ne0\Rightarrow x\ne-4\)
A vô nghĩa khi \(x+4=0\Rightarrow x=-4\)