K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2016

a ) Ta có :
\(\left(x+y\right)^2-\left(x-y\right)^2\)

\(=\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)+\left(x-y\right)\right]\)

\(=\left(2x\right)\left(2y\right)\)

\(=4xy\)

\(\Rightarrow DPCM\)

8 tháng 7 2017

Cái này dễ :v, Mincopski thẳng cánh :v

\(A=\sqrt{8x^2+1}+\sqrt{8y^2+1}+\sqrt{8z^2+1}\)

\(=\sqrt{\left(\sqrt{8}x\right)^2+1}+\sqrt{\left(\sqrt{8}y\right)^2+1}+\sqrt{\left(\sqrt{8}z\right)^2+1}\)

\(\ge\sqrt{\left(\sqrt{8}x+\sqrt{8}y+\sqrt{8}z\right)^2+\left(1+1+1\right)^2}\)

\(\ge\sqrt{\left(\sqrt{8}\left(x+y+z\right)\right)^2+9}\)

\(\ge\sqrt{\sqrt{8}^2+9}=\sqrt{8+9}=17\)

Xảy ra khi \(x=y=z=\frac{1}{3}\)

Done !! :3

9 tháng 7 2017

xem lai đi bạn ơi đây là timg GTLN chứ không phải GTNN bạn nhé. mà mình chưa thấy sử dụng x,y,z thuộc đoạn 0;1 nhỉ

7 tháng 7 2017

Áp dụng bđt Bunhiacopxki

\(\left(x+y\right)^2\le\left(x^2+y^2\right)\left(1+1\right)=2.2=4\)

<=>\(-2\le x+y\le2\)

GTNN của x+y là -2 khi x=y=-1

GTLN của x+y là 2 khi x=y=1

7 tháng 7 2017

thank you verry much

26 tháng 9 2020

\(y-x=1\Rightarrow x=y-1\)

\(\Rightarrow x^2+y^2=\left(y-1\right)^2+y^2\)

\(=y^2-2y+1+y^2\)

\(=2y^2-2y+1\)

\(=2\left(y^2-y+\frac{1}{2}\right)\)

\(=2\left(y^2-2y\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{2}\)

\(=2\left(y-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall y\)

Dấu"=" xảy ra khi \(2\left(y-\frac{1}{2}\right)^2=0\Rightarrow y=\frac{1}{2}\)

Vì \(y-x=1\)nên

\(\Rightarrow\frac{1}{2}-x=1\Rightarrow x=-\frac{1}{2}\)

Vậy \(Min_A=\frac{1}{2}\Leftrightarrow x=-\frac{1}{2};y=\frac{1}{2}\)

18 tháng 3 2020

cái này mik chịu, mik mới có lớp 7

19 tháng 3 2020

1. Ta có \(\left(b-a\right)\left(b+a\right)=p^2\)

Mà b+a>b-a ; p là số nguyên tố 

=> \(\hept{\begin{cases}b+a=p^2\\b-a=1\end{cases}}\)

=> \(\hept{\begin{cases}b=\frac{p^2+1}{2}\\a=\frac{p^2-1}{2}\end{cases}}\)

Nhận xét :+Số chính phương chia 8 luôn dư 0 hoặc 1 hoặc 4

Mà p là số nguyên tố 

=> \(p^2\)chia 8 dư 1

=> \(\frac{p^2-1}{2}⋮4\)=> \(a⋮4\)(1)

+Số chính phương chia 3 luôn dư 0 hoặc 1

Mà p là số nguyên tố lớn hơn 3

=> \(p^2\)chia 3 dư 1

=> \(\frac{p^2-1}{2}⋮3\)=> \(a⋮3\)(2)

Từ (1);(2)=> \(a⋮12\)

Ta có \(2\left(p+a+1\right)=2\left(p+\frac{p^2-1}{2}+1\right)=p^2+1+2p=\left(p+1\right)^2\)là số chính phương(ĐPCM)