K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2019

\(a^3-b^3=\left(a-b\right).\left(a^2+ab+b^2\right)\)

\(\Leftrightarrow\)\(a^3-b^3=a^3+a^2b+ab^2-a^2b-ab^2-b^3\)

\(\Leftrightarrow\)\(a^3-b^3=a^3-b^3\)

\(\Rightarrow\)\(đpcm\)

8 tháng 5 2019

\(a^3+b^3=\left(a+b\right).\left(a^2-ab+b^2\right)\)

\(\Leftrightarrow\)\(a^3+b^3=a^3-a^2b+ab^2+a^2b-ab^2+b^3\)

\(\Leftrightarrow\)\(a^3+b^3=a^3+b^3\)

\(\Rightarrow\)\(đpcm\)

7 tháng 1 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

\(\frac{a^2-b^2}{ab}=\frac{\left(bk\right)^2-b^2}{bk.b}=\frac{b^2.k^2-b^2}{b^2k}=\frac{b^2\left(k^2-1\right)}{b^2k}=\frac{k^2-1}{k}\left(1\right)\)

\(\frac{c^2-d^2}{cd}=\frac{\left(dk\right)^2-d^2}{dk.d}=\frac{d^2k^2-d^2}{d^2k}=\frac{d^2\left(k^2-1\right)}{d^2.k}=\frac{k^2-1}{k}\left(2\right)\)

Từ (1) và (2)=>\(\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\).

 

7 tháng 1 2016

phần b đề kiểu gì vậy??//

5 tháng 10 2019

a) \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)

\(=7^2-4.12=49-48=1\)

b(\(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)

\(=20^2+4.3=400+12=412\)

5 tháng 10 2019

Cm: a, Ta có:

(a+b)2 = a2 + 2ab +b2 (1)

(a-b)2 + 4ab = a2 - 2ab +b+ 4ab = a2 + 2ab +b2 ( 2)

Từ (1), (2) => đpcm

b. Ta có 

(a-b)= a2 - 2ab +b (3)

(a+b)2 - 4ab = a2 + 2ab +b- 4ab = a2 - 2ab +b(4)

Từ (3),(4)=> đpcm

Áp dụng tính chất:

a, (a-b)2 = (a+b)2 - 4ab = 72 -4.12 = 1

b,(a+b)2 = (a-b)2 + 4ab = 202 + 4.3 = 412

Chúc bn hc tốt!

5 tháng 10 2019

Chúc bạn học tốt!

5 tháng 10 2019

Biến đổi vế phải:

undefinedundefinedundefined

5 tháng 7 2017

(a-b)= (a-b).(a-b)

         = a2 - ab - ab + b2

         = a2 - 2ab + b2 (đpcm)

5 tháng 10 2021
Ko phải bạn ạ
22 tháng 10 2016

a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)

=> \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(kb\right)^2+b^2}{\left(kd\right)^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\) (1)

\(\frac{ab}{cd}=\frac{kbb}{kdd}=\frac{k.b^2}{k.d^2}=\frac{b^2}{d^2}\) (1)

Từ (1) và (2) => \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

b) Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)

Ta có: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=k^3\)

Mà: \(k^3=\frac{a}{d}\) => \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)

 

22 tháng 10 2016

a)Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\left(đpcm\right)\)

Bài 2: 

\(\Leftrightarrow3^x+3^x\cdot9=2430\)

\(\Leftrightarrow3^x\cdot10=2430\)

\(\Leftrightarrow3^x=243\)

hay x=5

AH
Akai Haruma
Giáo viên
9 tháng 11 2019

Bài 1:

Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt\). Khi đó:

a)

\(\frac{a^2}{a^2+b^2}=\frac{(bt)^2}{(bt)^2+b^2}=\frac{b^2t^2}{b^2(t^2+1)}=\frac{t^2}{t^2+1}(1)\)

\(\frac{c^2}{c^2+d^2}=\frac{(dt)^2}{(dt)^2+d^2}=\frac{d^2t^2}{d^2(t^2+1)}=\frac{t^2}{t^2+1}(2)\)

Từ $(1);(2)$ suy ra đpcm.

b)

\(\left(\frac{a+c}{b+d}\right)^2=\left(\frac{bt+dt}{b+d}\right)^2=\left(\frac{t(b+d)}{b+d}\right)^2=t^2(3)\)

\(\frac{a^2+c^2}{b^2+d^2}=\frac{(bt)^2+(dt)^2}{b^2+d^2}=\frac{t^2(b^2+d^2)}{b^2+d^2}=t^2(4)\)

Từ $(3);(4)\Rightarrow \left(\frac{a+c}{b+d}\right)^2=\frac{a^2+c^2}{b^2+d^2}$ (đpcm)

AH
Akai Haruma
Giáo viên
9 tháng 11 2019

Bài 2:

Từ $a^2=bc\Rightarrow \frac{a}{c}=\frac{b}{a}$

Đặt $\frac{a}{c}=\frac{b}{a}=t\Rightarrow a=ct; b=at$. Khi đó:

a)

$\frac{a^2+c^2}{b^2+a^2}=\frac{(ct)^2+c^2}{(at)^2+a^2}=\frac{c^2(t^2+1)}{a^2(t^2+1)}=\frac{c^2}{a^2}=(\frac{c}{a})^2=\frac{1}{t^2}(1)$

Và:

$\frac{c}{b}=\frac{a}{tb}=\frac{a}{t.at}=\frac{1}{t^2}(2)$

Từ $(1);(2)$ suy ra đpcm.

b)

$\left(\frac{c+2019a}{a+2019b}\right)^2=\left(\frac{c+2019a}{ct+2019at}\right)^2=\left(\frac{c+2019a}{t(c+2019a)}\right)^2=\frac{1}{t^2}(3)$

Từ $(2);(3)$ suy ra đpcm.