Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) \(Thay\) \(x=2\) \(\text{ vào }\)\(PT:\)
\(2m-3=2m-2-1.\\ \Leftrightarrow2m-3-2m+2+1=0.\)
\(\Leftrightarrow0=0\) (luôn đúng).
\(\Rightarrow\) PT luôn nhận x = 2 làm nghiệm với mọi giá trị của m.
Gọi hai số chính phương liên tiếp đó là k^2 và (k+1)^2
Ta có:
k^2+(k+1)^2+k^2.(k+1)^2
=k^2+k^2+2k+1+k^4+2k^3+k^2
=k^4+2k^3+3k^2+2k+1
=(k^2+k+1)^2
=[k(k+1)+1]^2 là số chính phương lẻ.
Vì là hai số chính phương liên tiếp
nên ta đặt hai số đó là k2 và (k+1)2 ( k ∈ Z )
Theo đề bài ta có : k2 + ( k + 1 )2 + k2(k+1)2
= k2 + k2 + 2k + 1 + ( k2 + k )2
= k4 + 2k3 + 3k2 + 2k + 1
= ( k4 + k3 + k2 ) + ( k3 + k2 + k ) + ( k2 + k + 1 )
= k2( k2 + k + 1 ) + k( k2 + k + 1 ) + ( k2 + k + 1 )
= ( k2 + k + 1 )2 = [ k( k + 1 ) + 1 ]2
Vì k ; k+1 là hai số nguyên liên tiếp nên sẽ có 1 số chia hết cho 2
=> k( k + 1 ) chẵn => k( k + 1 ) + 1 lẻ
=> [ k( k + 1 ) + 1 ]2 là một số chính phương lẻ (đpcm)
Gọi hai số chính phương liên tiếp là \(k^2\)và \(\left(k+1\right)^2\)
Ta có: \(k^2+\left(k+1\right)^2+k^2\left(k+1\right)^2\)
\(=k^2+k^2+2k+1+k^4+2k^3+k^2\)
\(=k^4+2k^3+3k^2+2k+1=\left(k^2+k+1\right)^2\)
\(=\left[k\left(k+1\right)+1\right]^2\)là số chính phương lẻ
Vậy tổng của 2 số đó cộng với tích của chúng là 1 số chính phương lẻ ( đpcm )
1/ n3+n+2=(n+1)(n2-n+2)
Xet chẵn lẻ của n => chia hết cho 2 => hợp số
online math oi, chọn câu trả lời này đi
Lời giải:
Câu 1)
Ta có: \(mx-3=2m-x-1\)
\(\Leftrightarrow xm-3-2m+x+1=0\)
\(\Leftrightarrow m(x-2)+x-2=0\)
\(\Leftrightarrow (m+1)(x-2)=0\)
Để đẳng thức trên đúng với mọi $m$ thì \(x-2=0\Leftrightarrow x=2\)
Do đó với mọi $m$ thì pt nhận $x=2$ là nghiệm
Câu 2:
Gọi hai số chính phương liên tiếp là \(a^2, (a+1)^2\)
Theo đề bài ta phải cm \(A=a^2+(a+1)^2+a^2(a+1)^2 \) là scp lẻ.
Thật vậy:
\(A=a^2+a^2+2a+1+a^2(a^2+2a+1)\)
\(A=a^4+2a^3+3a^2+2a+1\)
\(A=(a^2)^2+a^2+1+2a^2.a+2a^2.1+2a.1=(a^2+a+1)^2\)
Mà \(a^2+a+1=a(a+1)+1\) lẻ do $a(a+1)$ chẵn.
Do đó $A$ là scp lẻ. Ta có đpcm.
gọi 2 số chính phương liên tiếp là k^2 và (k + 1)^2
theo đề bài ta có :
k^2 + (k+1)^2 + k^2(k+1)^2
= k^2 + k^2 + 2k + 1 + k^2(k^2 + 2k + 1)
= 2k^2 + 2k + 1 + k^4 + 2k^3 + k^2
= k^4 + 2k^3 + 3k^2 + 2k + 1
= k^4 + k^2 + 1 + 2k^3 + 2k^2 + 2k
= (k^2 + k + 1)^2
= [k(k+1)+1]^2
k(k+1) chia hết cho 2 (2 số tự nhiên liên tiếp) => k(k+1) +1 lẻ
=> [k(k+1)+1)^2 là số chính phương lẻ
Gọi 2 số chính phương liên tiếp là \(a^2\) và \(\left(a+1\right)^2\)
Do a, a + 1 là 2 số tự nhiên liên tiếp
=> Luôn có 1 số chẵn, 1 số lẻ => \(a\left(a+1\right)\) chẵn
Có \(a^2+\left(a+1\right)^2+a^2.\left(a+1\right)^2\)
= \(a^2+\left(a^2+2a+1\right)+a^2\left(a^2+2a+1\right)\)
= \(a^4+2a^3+3a^2+2a+1\)
= \(\left(a^2+a+1\right)^2=\left[a\left(a+1\right)+1\right]^2\)
=> đpcm