Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. VD: (12 + 30 + 68) \(⋮\)11 nên 123068 \(⋮\)11
Vậy: (ab + cd + eg) \(⋮\)11 thì abcdeg \(⋮\)11.
b. Đề bài sai
Chúc bạn học tốt!
a,abcdeg=ab.10000+cd.100+eg
=9999.ab+99.cd+ab+cd+eg
=(9999ab+99cd)+(ab+cd+eg)
Vì 9999ab+99cd chia hết cho 11 và ab+cd+eg chia hết cho 11(theo đề bài)
=>đpcm
b đợi tí chưa nghĩ ra
a,abcdeg=ab.10000+cd.100+eg
=9999.ab+99.cd+ab+cd+eg
=(9999ab+99cd)+(ab+cd+eg)
Vì 9999ab+99cd chia hết cho 11 và ab+cd+eg chia hết cho 11(theo đề bài)
=>đpcm
b đợi tí chưa nghĩ ra
ab+cd+eg = 10a+b+d+10e+g
=10(a+c+e)+b+d+g chia hết cho 11 thì
a+c+e chia hết 11
b+d+g chia hết 11
Ta có abcdeg=10000ab+100cd+eg=9999ab+99cd+(ab+cd+eg)
Mà 9999ab chia hết cho 11; 99cd chia hết cho 11;(ab+cd+eg) chia hết cho 11
\(\Rightarrow\)abcdeg chia hết cho 11 (đpcm)
a. Vì abcdeg chia hết cho 11 ( giả thiết b ) => abcdeg chia hết cho 11
b. Vì ab+cd+eg chia hết cho 11 ( giả thiết đầu bài ) => ab+cd+eg chia hết cho 11
7)a) abcabc : abc = 1001
abcabc = 1001 x abc . Mà 1001 chia hết cho 7; 11; 13 nên 1001 x abc chia hết cho 7; 11; 13 . Vậy abcabc chia hết cho 7; 11; 13 ( đpcm)
b .Vì abc = 2 . deg nên abcdeg : deg = 2001
abcdeg = 2001 x deg. Do 2001 chia hết cho 23 và 29 nên 2001 x deg chia hết cho 23 và 29 . Vậy abcdeg chia hết cho 23 và 29 ( đpcm)
Ta có :
abcabc = 1000abc + abc
= 1001 . abc
= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13
câu 1
(x+1)+(x+2)+...+(x+100)=5750
(x+x+...+x)+(1+2+3+...+99+100)=5750 (có 100 số x và từ 1 -100 có 100 số)
(x.100)+(1+100).100:2=5750
(x.100)+5050=5750
x.100=700
x=7
vậy........
câu 2
a)ta có
abcdeg=ab.10000+cd.100+eg
=9999.4b+99cd+ab+cd+eg
=(9999ab+99cd)+(ab+cd+eg)
ta thấy 9999ab+99cd\(⋮\)11 và ab+cd+eg cn vậy...
=>....
vậy...
b)ta có 10^3 chia hết cho 8
=>10^25.10^3 chia hết cho 8 (=10^28)
=>10^28+8 chia hết cho 28 (1)
ta có 10^28+8=10...08(27 cs 0)
=>10^28+8\(⋮\)9(2)
vì ưCLN(8;9)=1 (3)
từ (1)(2)(3) suy ra 10^28+8 chia hết cho 72
vậy.....
TK :
Theo tính chất chia hết của một tổng:
(ab + cd + eg) chia hết cho 11 (giả thiết),⇒ ab hoặc cd hoặc eg chia hết cho 11
⇒ abcdeg chia hết cho 11 (tính chất a ⋮ b, thì ac ⋮ b)
Theo tính chất chia hết cho 11:
abcdeg = ab.10000 + cd.100 + eg
abcdeg = 9999.ab + 99.cd + ab + cd + eg
abcdeg = 9999ab + 99cd + (ab + dc + eg)
Mà 9999ab ⋮ 11, 99cd ⋮ 11, (ab + cd + eg) ⋮ 11
⇒ abcdeg ⋮ 11
abcdeg =1000ab+100cd+eg =11 (101ab + 11cd )+(ab+cd+eg)
vi ab+cd+eg chia het cho 11 nen abcdeg chia het cho11
a) abcdeg = 10000.ab+100.cd+eg = 9999.ab+99.cd+(ab+cd+eg)
Ta có: 9999.ab và 99.cd luôn chia hết cho 11
Nên nếu (ab+cd+eg) chia hết cho 11 thì abcdeg chia hết cho 11
=> Đpcm