K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2017

Ta có: \(P\left(x\right)=ax^2+bx+c\)

+) \(P\left(0\right)=a.0^2+b.0+c=c⋮7\)

+) \(P\left(1\right)=a.1^2+b.1+c=a+b+c\)

\(c⋮7\)

=> a+b\(⋮7\)(1)

+) \(P\left(2\right)=a.2^2+b.2+c=4a+2b+c=2\left(2a+b\right)+c\)

mà c chia hết cho 7

=>2(2a+b) chia hết cho 7

=> 2a+b chia hết cho 7 vì (2,7)=1

=> a+(a+b) chia hết cho 7

=> a chia hết cho 7 vì a+b chia hết cho7

=> b chia hết cho 7

vầy a,b,c chia hết cho 7

13 tháng 3 2017

ta có f(x)=ax\(^2\)+bx+c

tại x=0 =>f(0)=c\(⋮\)7(1)

x=1=>f(1)=a+b+c\(⋮\)7

mà c\(⋮\)7=>a+b\(⋮\)7(2)

x=-1=>f(-1)=a-b+c

mà c\(⋮\)7=>a-b\(⋮\)7(3)

từ (2)(3)có a+b+a-b=2a\(⋮\)7

mà 2;7=(1)

=>a\(⋮\)7(4)

từ (4)(3)ta có a-b\(⋮\)7

a\(⋮\)7

=>b\(⋮\)7(5)

từ (1)(4)(5)suy ra a,b,c\(⋮\)7

15 tháng 4 2022

\(Q\left(0\right)=c⋮2014⋮1007\)

\(Q\left(1\right)=\left(a+b+c\right)⋮2014\Rightarrow\left(a+b\right)⋮2014\Rightarrow\left(2a+2b\right)⋮2014\)

\(Q\left(2\right)=\left(4a+2b+c\right)⋮2014\Rightarrow\left(4a+2b\right)⋮2014\)

\(\Rightarrow\left(4a+2b-2a-2b\right)⋮2014\)

\(\Rightarrow2a⋮2014\Rightarrow a⋮1007\Rightarrow b⋮1007\)

\(\Rightarrowđpcm\)

25 tháng 3 2017

\(P\left(0\right)=ax^2+bx+c=a.0+b.0+c=c\) 

\(P\left(1\right)=ax^2+bx+c=a.1+b.1+c=a+b+c\)

\(P\left(2\right)=ax^2+bx+c=a.2^2+b.2+c=4a+2b+c\)

Do \(P\left(x\right)⋮3\forall x\in Z\) nên c;a+b+c;4a+2b+c đều chia hết cho 3

=>\(\left(a+b+c\right)-c=a+b⋮3\Rightarrow2\left(a+b\right)=2a+2b⋮3\);\(\left(4a+2b+c\right)-c=4a+2b⋮3\)

=>\(\left(4a+2b\right)-\left(2a+2b\right)=2a⋮3\) mà (2;3)=1 => a chia hết cho 3

a+b+c chia hết cho 3 mà a;c đều chia hết cho 3 => b cũng chia hết cho 3

=>....

10 tháng 4 2022

tham khảo

Vì P ( x ) = ax2ax2 + bx + c chia hết cho 5 với mọi giá trị nguyên của x nên :

P ( 0 ) ; P ( 1 ) ; P ( - 1 ) tất cả đều chia đều cho 5 .

Ta có :

P ( 0 ) chia hết cho 5

⇒ a . 02+ b . 0 + c chia hết cho 5

⇒ c chia hết cho 5

P ( 1 ) chia hết cho 5

⇒ a . 12 + b . 1 + c chia hết cho 5

⇒ a + b + c chia hết cho 5

Vì c chia hết cho 5 ⇒ a + b chia hết cho 5 ( 1 )

P ( - 1 ) chia hết cho 5

⇒ a . (−1)2(−1)2 + b . ( - 1 ) + c chia hết cho 5

⇒ a + b + c chia hết cho 5

Từ ( 1 ) ; ( 2 ) ⇒ a + b + a - b chia hết cho 5

⇒ 2a chia hết cho 5

Mà ƯCLN ( 2 ; 3 ) = 1 ⇒ a chia hết cho 5

Vì a + b chia hết cho 5 ; a chia hết cho 5 ⇒ b chia hết cho 5

Vậy a , b , c chia hết cho 5 . ( đpcm )

15 tháng 4 2017

xét F(-1)=a-b+c\(⋮\)3 (1); xétF(1)=a+b+c\(⋮\)3(2) từ (1) và (2) suy ra a-b+c+a+b+c\(⋮\)3 suy ra 2(a+c)\(⋮\)3 suy ra a+c\(⋮\)3 (3)

xétF(0)=c\(⋮\)3 suy ra a\(⋮\)3 (4) từ (3) và (4) suy ra F(x)=bx\(⋮3\forall\)x nên b\(⋮\)3

10 tháng 4 2020

Vì  \(P\left(x\right)=ax^2+bx+c\) với mọi x

=> Ta có: 

Với x = 0 => \(P\left(0\right)=c⋮5\)

Với x = 1 => \(P\left(1\right)=a+b+c⋮5\Rightarrow a+b⋮5\)

Với  x = -1 => \(P\left(-1\right)=a-b+c⋮5\Rightarrow a-b⋮5\)

=> ( a + b ) + ( a  - b ) \(⋮\)

=> 2a \(⋮\)

=> a \(⋮\)

=> b \(⋮\)5

NV
2 tháng 4 2019

\(f\left(0\right)=c\)\(f\left(0\right)⋮2011\Rightarrow c⋮2011\)

\(f\left(1\right)⋮2011\Rightarrow a+b+c⋮2011\Rightarrow a+b⋮2011\)

\(f\left(-1\right)⋮2011\Rightarrow a-b+c⋮2011\Rightarrow a-b⋮2011\)

\(\Rightarrow\left(a+b\right)+\left(a-b\right)⋮2011\Rightarrow2a⋮2011\)

Mà 2 và 2011 nguyên tố cùng nhau \(\Rightarrow a⋮2011\)

\(\left\{{}\begin{matrix}a⋮2011\\a+b⋮2011\end{matrix}\right.\) \(\Rightarrow b⋮2011\)