K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2017

3 tháng 1 2020

a) Nếu n = 3k+1 thì  n 2 = (3k+1)(3k+1) hay  n 2  = 3k(3k+1)+3k+1

Rõ ràng  n 2  chia cho 3 dư 1

Nếu n = 3k+2 thì  n 2 = (3k+2)(3k+2)  hay  n 2 = 3k(3k+2)+2(3k+2) = 3k(3k+2)+6k+3+1 nên  n 2  chia cho 3 dư 1.

b) p là số nguyên tố lớn hơn 3 nên không chia hết cho 3. Vậy p 2  chia cho 3 dư 1 tức là   p 2 = 3 k + 1  do đó  p 2 + 2003 = 3 k + 1 + 2003 = 3k+2004 ⋮ 3

Vậy p 2 + 2003  là hợp số

25 tháng 6 2023

a) n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2

+) n chia cho 3 dư 1 : n = 3k + 1 => n2 = (3k +1).(3k +1) = 9k2 + 6k + 1 = 3.(3k+ 2k) + 1 => n2 chia cho 3 dư 1

+) n chia cho 3 dư 2 => n = 3k + 2 => n= (3k +2).(3k+2) = 9k2 + 12k + 4 = 3.(3k+ 4k +1) + 1 => n2 chia cho 3 dư 1

Vậy...

b) p là số nguyên tố > 3 => p lẻ => plẻ => p + 2003 chẵn => p2 + 2003 là hợp số

4 tháng 1 2015

tất nhiên câu a là hợp số rồi!

vì nếu n=3k+1 thì n^2 + 2006=9k^2+6k+2007 chia hết cho 3

nếu n=3k+2 thì n^2 + 2006=9k^2+12k+2010 chia hết cho 3

 

4 tháng 1 2015

làm tương tự câu a thì cũng đc (p+5)x(p+7) chia hết cho 3 thôi!

nếu p=4k+1 thì (p+5)x(p+7)=(4k+6)x(4k+8) chia hết cho 8

nếu p=4k+3 tương tự.

=> (p+5)x(p+7) chia hết cho 8

do UCNN(8,3)=1 => đpcm

Vì n là số nguyên tố lớn hơn 3 nên n không chia hết cho 3

hay n=3k+1 hoặc n=3k+2(k∈N)

Thay n=3k+1 vào \(n^2+2006\), ta được:

\(\left(3k+1\right)^2+2006=9k^2+6k+2007=3\left(3k^2+2k+669\right)⋮3\)(1)

Thay n=3k+2 vào \(n^2+2006\), ta được:

\(\left(3k+2\right)^2+2006=9k^2+6k+2010=3\left(3k^2+2k+670\right)⋮3\)(2)

Từ (1) và (2) suy ra \(n^2+2006\) là hợp số

17 tháng 11 2015

Tham khảo câu hỏi tương tự nhé bạn .

Tick tớ đc chứ 

10 tháng 1 2016

Vì n lớn hơn 3 nên n có dạng 3k + 1 hoặc 3k + 2:

Với n = 3k +1 thì:

 n^2 + 2006 = (3k+1). (3k+1) +2006

                  = 9.k.k + 3k+3k+1 + 2006

                  = 3.(3.k.k +1+1)+1+2006

                  = 3.(3.k.k +1+1) + 2007 chia hết cho 3

=> Với n = 3k+1 thì n^2 + 2006 là hợp số 

Với n= 3k+2 thì:

(3k+2).(3k+2)+2006 = 9.k.k+6k+6k+4+2006

                             =3(3.k.k + 2k +2k)+4+2006

                             =3(3.k.k +2k+2k)+2010 chia hết cho 3

=>Với n = 3k+2 thì n^2 +2006 là hợp số

Vậy với mọi số nguyên tố n lớn hơn 3 thì n^2 +2006 là hợp số

(Hãy làm theo cách của mình đi, đúng đó.Từ đóhãy tick cho mình nha)

 

                   =

 

 

10 tháng 1 2016

TH1: n = 3k + 1 => (3k + 1)2 + 2006 <=> 9k2 + 6k + 1 + 2006 = 3k(3k + 2) + 2007 

3k(3k + 2)  chia hết cho 3 và 2007 chia hết cho 3 =>[3k(3k + 2) + 2007] chia hết cho 3   (1)

TH2: n = 3k + 2 => (3k + 2)2 + 2006 <=> 9k2 + 12k + 4 + 2006 = 3k(3k + 4) + 2010

3k(3k + 4)  chia hết cho 3 và 2010 chia hết cho 3 => [3k(3k + 4) + 2010] chia hết cho 3  (2)

Từ (1) và (2) => n2 + 2006 là hợp số

1 tháng 2 2016

sai rồi : a) Giả sử n2 + 2006 là số chính phương khi đó ta đặt n2 + 2006 = a2 ( a( Z) ( a2 – n2 = 2006( (a-n) (a+n) = 2006 (*) (0,25 điểm).
+ Thấy : Nếu a,n khác tính chất chẵn lẻ thì vế trái của (*) là số lẻ nên không thỏa mãn (*) ( 0,25 điểm).
+ Nếu a,n cùng tính chẵn hoặc lẻ thì (a-n)2 và (a+n) 2 nên vế trái chia hết cho 4 và vế phải không chia hết cho 4 nên không thỏa mãn (*) (0,25 điểm).
Vậy không tồn tại n để n2 + 2006 là số chính phương. (0,25 điểm).
b) n là số nguyên tố > 3 nên không chia hết cho 3. Vậy n2 chia hết cho 3 dư 1 do đó n2 + 2006 = 3m + 1 + 2006 = 3m+2007= 3( m+669) chia hết cho 3.
Vậy n2 + 2006 là hợp số. 

1 tháng 2 2016

Ta có: n là số nguyên tố lớn hơn 3

=>n không chia hết cho 3

TH1: n=3m+1              (m thuộc N)

=>n2=(3m+1)2=3m(3m+1)+(3m+1)=9m2+3m+3m+1=3(3m2+2m)+1

=>n2 chia 3 dư 1

TH2: n=3n+2          (k thuộc N)

=>n2=(3k+2)2=3k(3k+2)+2(3k+2)=9k2+6k+6k+4=3(3k2+4k+1)+1

=>n2 chia 3 dư 1

Vậy n2 luôn chia 3 dư 1 (với n là SNT >3)

=>n2=3x+1          (x thuộc N)

=>n2+2006=3x+1+2006=3x+2007=3(x+669) chia hết cho 3

Vậy n2+2006 là hợp số

15 tháng 5 2016

a) đề thiếu

15 tháng 5 2016

Đặt n2 + 2006 = a2 (a thuộc Z)

=> 2006 = a2 - n2 = (a - n)(a + n) (1)

Mà (a + n) - (a - n) = 2n chia hết cho 2

=>a + n và a - n có cùng tính chẵn lẻ

+)TH1: a + n và a - n cùng lẻ => (a - n)(a + n) lẻ, trái với (1)

+)TH2: a + n và a - n cùng chẵn => (a - n)(a + n) chia hết cho 4, trái với (1)

Vậy không có n thỏa mãn n2+2006 là số chính phương

b)Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3

=> n = 3k + 1 hoặc n = 3k + 2 (k$$N*)

+) n = 3k + 1 thì n2 + 2006 = (3k + 1)2 + 2006 = 9k2 + 6k + 2007 chia hết cho 3 và lớn hơn 3

=> n2 + 2006 là hợp số 

+) n = 3k + 2 thì n2 + 2006 = (3k + 2)2 + 2006 = 9k2 + 12k + 2010 chia hết cho 3 và lớn hơn 3

=> n2 + 2006 là hợp số

Vậy n2 + 2006 là hợp số

21 tháng 5 2016

a) Giả sử n2

(a+n) = 2006 (*) 

+ Thấy : Nếu a,n khác tính chất chẵn lẻ thì vế trái của (*) là số lẻ nên không thỏa mãn (*) 

+ Nếu a,n cùng tính chẵn hoặc lẻ thì (a-n)2 và (a+n) 2 nên vế trái chia hết cho 4 và vế phải không chia

hết cho 4 nên không thỏa mãn (*) 

Vậy không tồn tại n để n2

b) n là số nguyên tố > 3 nên không chia hết cho 3. Vậy n2

+ 2006 = 3m+2007= 3( m+669) chia hết cho 3.

Vậy n2

+ 2006 là hợp số.

+ 2006 là số chính phương khi đó ta đặt n2

+ 2006 là số chính phương. 

21 tháng 5 2016

Đã biết câu trả lời mà còn hỏi nữa con rảnh ruồi kia -__-