Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có: $S_{ABC}=\frac{h_a.a}{2}$
$S_{ABC}=\sqrt{p(p-a)(p-b)(p-c)}$ theo công thức Heron.
$\Rightarrow \frac{h_a.a}{2}=\sqrt{p(p-a)(p-b)(p-c)}$
$\Leftrightarrow \frac{a\sqrt{p(p-a)}}{2}=\sqrt{p(p-a)(p-b)(p-c)}$
$\Leftrightarrow \frac{a}{2}=\sqrt{(p-b)(p-c)}$
$\Rightarrow \frac{a}{2}=\frac{1}{2}\sqrt{(a+c-b)(a+b-c)}$
$\Rightarrow a^2=(a+c-b)(a+b-c)$$\Leftrightarrow a^2=a^2-(b-c)^2\Rightarrow (b-c)^2=0$
$\Rightarrow b=c$ hay $ABC$ là tam giác cân.
\(\cos2A+\cos2B+\cos2C=-1\)
\(\Leftrightarrow\cos2A+\cos2B+\cos2C+1=0\)
\(\Leftrightarrow2\cos\left(A+B\right)\cos\left(A-B\right)+2\cos^2C=0\)
\(\Leftrightarrow2\cos\left(180^0-C\right)\cos\left(A-B\right)+2\cos^2C=0\)
\(\Leftrightarrow-2\cos C\cos\left(A-B\right)+2\cos^2C=0\)
\(\Leftrightarrow-2\cos C(\cos\left(A-B\right)-\cos C)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\cos C=0\\\cos\left(A-B\right)=\cos C\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}C=90^0\\A-B=C\\A-B=-C\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}C=90^0\\A=B+C\\A+C=B\end{matrix}\right.\)
Nếu \(A=B+C\Rightarrow A=B+C=\dfrac{180^o}{2}=90^o\) Tam giác ABC vuông tại A.
Nếu \(B=A+C\Rightarrow B=A+C=\dfrac{180^o}{2}=90^o\) Tam giác ABC vuông tại B.
Vậy, nếu \(\cos2A+\cos2B+\cos2C=-1\) thì tam giác ABC là tam giác vuông.
a.
\(\overrightarrow{AM}+\overrightarrow{BC}=\overrightarrow{AC}+\overrightarrow{CM}+\overrightarrow{BM}+\overrightarrow{MC}=\overrightarrow{AC}+\overrightarrow{BM}\)
b.
\(\overrightarrow{AE}=3\overrightarrow{EM}=3\overrightarrow{EA}+3\overrightarrow{AM}\Rightarrow4\overrightarrow{AE}=3\overrightarrow{AM}\Rightarrow\overrightarrow{AE}=\dfrac{3}{4}\overrightarrow{AM}\)
\(\Rightarrow\overrightarrow{AE}=\dfrac{3}{4}\left(\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\right)=\dfrac{3}{8}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}\)
\(\overrightarrow{BE}=\overrightarrow{BA}+\overrightarrow{AE}=-\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}=-\dfrac{5}{8}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}\)
\(\overrightarrow{BK}=\overrightarrow{BA}+\overrightarrow{AK}=-\overrightarrow{AB}+\dfrac{3}{5}\overrightarrow{AC}=\dfrac{8}{5}\overrightarrow{BE}\)
\(\Rightarrow\) B, E, K thẳng hàng
a: \(AB=\sqrt{\left[2-\left(-2\right)\right]^2+\left(-1-2\right)^2}=5\)
\(BC=\sqrt{\left(5-2\right)^2+\left(3+1\right)^2}=5\)
Do đó: AB=BC
hay ΔABC cân tại B