K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

a)

  A B C 100*

=> Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}\) = 180o

100o + \(\widehat{B}+\widehat{C}\) = 180o

\(\widehat{B}+\widehat{C}\) = 180o - 100o

\(\widehat{B}+\widehat{C}\) = 80o

Góc B = (80o+50o):2 = 65o

=> \(\widehat{C}\) = 65o - 50o = 15o

Vậy \(\widehat{B}\) = 65o ; \(\widehat{C}\) = 15o

b)

  80* A B C

Ta có : \(\widehat{3A}+\widehat{B}+\widehat{2C}\) = 180o

\(\widehat{3A}+\widehat{2C}\) = 180o - 80o

\(\widehat{3A}+\widehat{2C}\) = 100o

=> \(\widehat{A}\) = 100o:(3+2).3 = 60o

\(\widehat{C}\) = 100o - 60o = 40o

Vậy \(\widehat{A}\) = 60o ; \(\widehat{C}\) = 40o

1 tháng 12 2016

Xét tam giác ABC có:góc A+góc B+góc C=180 độ(tổng 3 góc trong tam giác)

\(\Rightarrow\)góc A+góc B=180 độ-góc C

\(\Rightarrow\)góc B+góc C=180 độ-góc A

góc A-góc B=22 độ

\(\Rightarrow\)góc A=\(\frac{\text{180 độ-góc C+22 độ}}{2}\)

\(\Rightarrow\)góc B=\(\frac{\text{180 độ-góc C+22 độ}}{2}-22độ\left(1\right)\)

Mà góc B-góc C=22 độ

\(\Rightarrow\)góc B=\(\frac{\text{180 độ-góc A+22 độ}}{2}\left(2\right)\)

Từ (1) và (2)\(\Rightarrow\)\(\frac{\text{180 độ-góc C+22 độ}}{2}-22độ=\frac{\text{180 độ-góc A+22 độ}}{2}\)

\(\Rightarrow\)\(\frac{\text{180 độ-góc C+22 độ-44độ}}{2}=\frac{\text{180 độ-góc A+22 độ}}{2}\)

\(\Rightarrow\)góc C-22 độ=góc A+22 độ

\(\Rightarrow\)góc A=góc C+44 độ

\(\Rightarrow\)góc B=góc C+22 độ

Xét tam giác ABC có:góc A+góc B+góc C=180 độ(tổng 3 góc trong tam giác)

Hay góc C+44 độ+góc C+22 độ+góc C=180 độ

3.góc C+66 độ=180 độ

góc C=\(\frac{180độ-66độ}{3}\)

góc C=38 độ

\(\Rightarrow\)góc A=38 độ +44 độ

góc A=82 độ

1 tháng 12 2016

@Phạm Nguyễn Tất Đạt thanks nhìu nha

Xét ΔABC có 

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

\(\Leftrightarrow2\cdot\left(\widehat{IBC}+\widehat{ICB}\right)=180^0-\alpha\)

\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{180^0-\alpha}{2}\)

Xét ΔIBC có

\(\widehat{BTC}+\widehat{IBC}+\widehat{ICB}=180^0\)

\(\Leftrightarrow\widehat{BTC}=180^0-\dfrac{180^0-\alpha}{2}=\dfrac{180^0+\alpha}{2}\)

27 tháng 9 2021

Ta có \(\widehat{A}+\widehat{ABC}+\widehat{C}=180^0\Rightarrow180^0-3\widehat{C}+\widehat{C}=180^0-70^0=110^0\)

\(\Rightarrow2\widehat{C}=70^0\Rightarrow\widehat{C}=35^0\Rightarrow\widehat{A}=180^0-3\cdot35^0=75^0\)

Ta có BE là p/g nên \(\widehat{B_1}=\widehat{B_2}=\dfrac{1}{2}\widehat{ABC}=35^0\)

Mà \(ED//BC\) nên \(\widehat{B_2}=\widehat{E_2}=35^0\left(so.le.trong\right)\left(1\right)\)

Ta có \(ED//BC\Rightarrow\widehat{E_1}=\widehat{C}=35^0\left(đồng.vị\right)\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\widehat{E_1}=\widehat{E_2}\left(=35^0\right)\)

Vậy ...

 

\(\widehat{B}+\widehat{C}=140^0\)

\(\Leftrightarrow4\cdot\widehat{C}=140^0\)

\(\Leftrightarrow\widehat{C}=35^0\)

hay \(\widehat{B}=105^0\)

Vậy:  ΔABC tù

15 tháng 9 2021

Vì \(\widehat{A}-\widehat{B}=\widehat{B}-\widehat{C}\) nên \(\widehat{A}-2\widehat{B}+\widehat{C}=0\)

\(\Rightarrow\left\{{}\begin{matrix}\widehat{A}-2\widehat{B}+\widehat{C}=0^0\left(1\right)\\\widehat{A}+\widehat{B}+\widehat{C}=180^0\left(2\right)\end{matrix}\right.\)

Trừ \(\left(2\right)\) cho \(\left(1\right)\), ta được \(3\widehat{B}=180^0\Rightarrow\widehat{B}=60^0\)

\(\Rightarrow\widehat{A}+\widehat{C}=120^0\)

Vậy GTLN của \(\widehat{A}\) là \(119^0\) vì \(\widehat{C}>0\)

24 tháng 9 2021

$\widehat{ABC}$

Ta có:

\(\widehat{A}>\widehat{B}=\widehat{C}\left(90^0>45^0=45^0\right)\)

`@` Theo định lý quan hệ giữa góc và cạnh đối diện

`->`\(\text{BC > AC = AB}\).