K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2019

A B C D N M P Q

a) Ta có : \(\frac{S_{APQ}}{S_{AMN}}=\frac{S_{APQ}}{S_{APN}}.\frac{S_{APN}}{S_{AMN}}=\frac{AQ}{AN}.\frac{AP}{AM}\)

Ta cần tính tỉ số \(\frac{AQ}{AN},\frac{AP}{AM}\)

Thật vậy, ta có : \(\frac{AQ}{QN}=\frac{AB}{DN}=3\Rightarrow\frac{AQ}{AQ+QN}=\frac{3}{4}\Rightarrow\frac{AQ}{AN}=\frac{3}{4}\)

\(\frac{AP}{PM}=\frac{AD}{BM}=2\Rightarrow\frac{AP}{AP+PM}=\frac{2}{3}\Rightarrow\frac{AP}{AM}=\frac{2}{3}\)

Do đó : \(\frac{AQ}{AN}.\frac{AP}{AM}=\frac{3}{4}.\frac{2}{3}=\frac{1}{2}\)

Vậy \(S_{APQ}=\frac{1}{2}.S_{AMN}\)

b) Ta có : \(\frac{CN}{ND}=2.\frac{BM}{MC}\)

đặt \(\frac{BM}{MC}=k\)thì \(\frac{CN}{ND}=2k\)

Đặt MC = x thì BM = kx . đặt ND = y thì CN = 2ky

ta có : \(\frac{AP}{PM}=\frac{AD}{BM}=\frac{x+kx}{kx}=\frac{k+1}{k}\Rightarrow\frac{AP}{AP+PM}=\frac{k+1}{2k+1}\)

\(\Rightarrow\frac{AP}{AM}=\frac{k+1}{2k+1}\)                                                               ( 1 )

Mặt khác, \(\frac{AQ}{QN}=\frac{AB}{DN}=\frac{2k+1}{1}\Rightarrow\frac{AQ}{AQ+QN}=\frac{2k+1}{2k+2}\Rightarrow\frac{AQ}{AN}=\frac{2k+1}{2k+2}\)           ( 2 )

Từ ( 1 ) và ( 2 ) suy ra \(\frac{AP}{AM}.\frac{AQ}{AN}=\frac{k+1}{2k+1}.\frac{2k+1}{2k+2}=\frac{1}{2}\)

Vậy \(S_{APQ}=\frac{1}{2}.S_{AMN}\)

22 tháng 4 2020

A H B N C M D I

Gọi khoảng cách từ A đến BM,ND lần lượt là h và k. Kẻ MH vuông góc AB

Ta có : \(S_{AMB}=\frac{MH.AB}{2}=\frac{S_{ABCD}}{2}\)

Tương tự \(S_{AND}=\frac{S_{ABCD}}{2}\)

Do đó : \(2S_{AMB}=2S_{AND}\) hay \(h.BM=k.DN\)

Mà BM=DN nên h=k

Suy ra khoảng cách từ A đến hai đường thẳng BM,DN là bằng nhau; BM cắt DN tại I

Vậy thì A nằm trên phân giác của \(\widehat{DIB}\) hay IA là phân giác của góc DIB ( đpcm ) 

1: 

a: Xét tứ giác BMDN có 

DM//BN

DM=BN

Do đó: BMDN là hình bình hành

Suy ra: BM//DN