K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2017

a) \(\overrightarrow{AB}\left(2;-2\right)\); \(\overrightarrow{CA}=\left(4;-4\right)\).
\(\dfrac{2}{4}=\dfrac{-2}{-4}\) nên \(\overrightarrow{AB};\overrightarrow{CA}\) cùng phương . Suy ra ba điểm A, B, C thẳng hàng.
\(\overrightarrow{AB}\left(2;1\right)\); \(\overrightarrow{AC}\left(m+3;2m\right)\).
3 điểm A, B, C thẳng hàng nên hai véc tơ \(\overrightarrow{AB},\overrightarrow{AC}\) cùng phương.
Suy ra: \(\dfrac{m+3}{2}=\dfrac{2m}{1}\Leftrightarrow m+3=4m\)\(\Leftrightarrow m=1\).

17 tháng 5 2017

\(\overrightarrow{AB}\left(-3;2\right)\); \(\overrightarrow{AC}\left(1;m-2\right)\).
Ba điểm A, B, C thẳng hàng khi và chỉ khi:
\(\dfrac{1}{-3}=\dfrac{m-2}{2}\Leftrightarrow-3\left(m-2\right)=2\)\(\Leftrightarrow m=\dfrac{4}{3}\).

18 tháng 5 2017

a) \(\overrightarrow{BA}\left(4;2\right);\overrightarrow{BC}\left(3;-1\right)\).
\(\dfrac{4}{3}\ne\dfrac{2}{-1}\) nên hai véc tơ \(\overrightarrow{BA};\overrightarrow{BC}\) không cùng phương hay 3 điểm A, B, C không thẳng hàng.
b) \(cos\widehat{ABC}=cos\left(\overrightarrow{BA};\overrightarrow{BC}\right)=\dfrac{4.3+2.\left(-1\right)}{\sqrt{4^2+2^2}.\sqrt{3^2+\left(-1\right)^2}}\)\(=\dfrac{\sqrt{2}}{2}\).
Suy ra: \(\widehat{ABC}=45^o\).

18 tháng 5 2017

Muốn chứng minh tứ giác ABCD là tứ giác nội tiếp ta cần chứng minh: \(\widehat{ABC}+\widehat{ADC}=180^o\)\(\Leftrightarrow\)
A B C D
\(\overrightarrow{BA}\left(-1;3\right);\overrightarrow{BC}\left(-2;-4\right)\)
\(cos\widehat{ABC}=cos\left(\overrightarrow{BA};\overrightarrow{BC}\right)\)\(=\dfrac{\left(-1\right).\left(-2\right)+3.\left(-4\right)}{\sqrt{\left(-1\right)^2+3^2}.\sqrt{\left(-2\right)^2+\left(-4\right)^2}}=\dfrac{-\sqrt{2}}{2}\).
Suy ra \(\overrightarrow{ABC}=135^o\).
\(\overrightarrow{DA}\left(4;-2\right);\overrightarrow{DC}\left(3;-9\right)\)
\(cos\widehat{ADC}=\left(\overrightarrow{DA};\overrightarrow{DC}\right)=\dfrac{4.3+\left(-2\right).\left(-9\right)}{\sqrt{4^2+2^2}.\sqrt{\left(3\right)^2+\left(-3\right)^2}}=\dfrac{\sqrt{2}}{2}\)
Suy ra \(\widehat{ADC}=45^o\)
Vậy \(\widehat{ADC}+\widehat{ABC}=135^o+45^o=180^o\).
Vì vậy tứ giác ABCD nội tiếp.

17 tháng 5 2017

a) \(\overrightarrow{AB}\left(3;4\right);\overrightarrow{AC}\left(6;8\right)\).
Dễ thấy \(\overrightarrow{AC}=2\overrightarrow{AB}\) nên 3 điểm A, B, C thẳng hàng.
b) \(\overrightarrow{MN}\left(2;4\right)\); \(\overrightarrow{NP}\left(1;-1\right)\).
\(\dfrac{2}{1}\ne\dfrac{4}{-1}\) nên hai véc tơ \(\overrightarrow{MN};\overrightarrow{NP}\) không cùng phương hay 3 điểm M, N, P không thẳng hàng.

22 tháng 12 2018

không

16 tháng 5 2017

Ta có \(\overrightarrow{AB}\left(5;10\right);\overrightarrow{CD}\left(-4;-8\right)\).
Suy ra \(\overrightarrow{AB}=-\dfrac{5}{4}\overrightarrow{CD}\) nên nay véc tơ này cùng phương nên hoặc 4 điểm A, B, C, D nằm trên một đường thẳng hoặc 2 đường thẳng AB và CD song song. (1)
Mặt khác: \(\overrightarrow{AC}\left(2;-6\right);\overrightarrow{BD}\left(-7;-12\right)\);
\(\dfrac{2}{-7}\ne\dfrac{-6}{-12}\) nên \(\overrightarrow{AC},\overrightarrow{BD}\) không cùng phương vậy 4 điểm A, C, B, D không nằm trên một đường thẳng. (2)
Từ (1) và (2) suy ra: hai đường thẳng AB và CD song song với nhau.

20 tháng 5 2017

a) \(G\left(-1;-\dfrac{4}{3}\right);H\left(11;-2\right);I\left(-7;-1\right)\)

b) \(\overrightarrow{IH}=3\overrightarrow{IG}\) suy ra I, G, H thẳng hàng

c) \(\left(x+7\right)^2+\left(y+1\right)^2=85\)