K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2019

a+b+c = 2p => 4p = 2(a+b+c); p=(a+b+c)/2

VP = 4p(p-a) = 2(a+b+c)(\(\frac{a+b+c}{2}-a\))

= \(2\left(a+b+c\right)\left(\frac{a+b+c-2a}{2}\right)\)

=\(2\left(a+b+c\right)\cdot\frac{b+c-a}{2}=\left(a+b+c\right)\left(b+c-a\right)\)

\(=ab+ac-a^2+b^2+bc-ab+bc+c^2-ac\)

\(=2bc+b^2+c^2-a^2\) = VT (đpcm)

10 tháng 9 2015

a + b + c = 2p

=> b + c = 2p - a 

=> ( b + c )^2 = (2p - a )^2

=> b^2 + c^2 + 2bc = 4p^2 - 4pa + a^2

=> b^2 + c^2 + 2bc - a^2 = 4p(p-a)

=> ĐPCM 

13 tháng 9 2018

Gọi  \(2bc+b^2 +c^2-a^2=VT\)

và \(4p\left(p-a\right)=VP\)

Biến đổi VP ta có :

\(4p\left(p-a\right)=2p\left(2p-2a\right)\)

\(=\left(a+b+c\right)\left(b-c-a\right)\)

\(=2bc+b^2+c^2-a^2=VT\)  (đpcm)

Vậy ......

13 tháng 9 2018

Ta có: \(a+b+c=2p\)

\(\Rightarrow b+c=2p-a\Rightarrow\left(b+c\right)^2=\left(2p-a\right)^2\)

\(\Rightarrow b^2+2bc+c^2=4p^2-4pa+a^2\)

\(\Rightarrow2bc+b^2+c^2-a^2=4p\left(p-a\right)\)(đpcm)

Vậy....

15 tháng 9 2018

Ta có :

VT = \(2bc+b^2+c^2-a^2\)

\(=\left(b+c\right)^2-a^2\)

\(=\left(b+c-a\right)\left(b+c+a\right)\)

\(=\left(b+c+a-2a\right).2p\)

\(=\left(2p-2a\right).2p\)

\(=4p\left(p-a\right)=VP\)

\(\left(đpcm\right)\)

Y
4 tháng 6 2019

\(2bc+b^2+c^2-a^2\)

\(=\left(b+c\right)^2-a^2\)

\(=\left(a+b+c\right)\left(b+c-a\right)\)

\(=2p\left(a+b+c-2a\right)\)

\(=2p\left(2p-2a\right)=4p\left(p-a\right)\)

4 tháng 6 2019

biến đổi vế phải ta được:

4p(p -a ) = 4p\(^2\)-4pa

=(2p)\(^2\)-2p.2a

=(a+b+c)\(^2\)-2a(a+b+c)

=\(a^2+b^2+c^2+2ab+2ac+2bc\)-\(2a^2-2ab-2ac\)

=\(2bc+b^2+c^2-a^2\)=vế trái (đpcm)

26 tháng 9 2019

\(2bc+b^2+c^2-a^2.\)'

\(=\left(2bc+b^2+c^2\right)-a^2.\)

\(=\left(b+c\right)^2-a^2\)

Theo đề ta có \(a+b+c=2p\)

\(\Rightarrow b+c=2p-a\)

\(\Rightarrow\left(b+c\right)^2-a^2\)

\(=\left(b+c+a\right)\left(b+c-a\right)\)

\(=\left(2p-a+a\right)\left(2p-a-a\right)\)

\(=2p\left(2p-2a\right)\)

\(=2p\cdot2\left(p-a\right)=4p\left(p-a\right)\)

\(\Rightarrow2bc+b^2+c^2-a^2=4p\left(p-a\right)\)(đpcm)

23 tháng 8 2020

2bc + b2 + c2 - a2

= ( b2 + 2ab + c2 ) - a2

= ( b + c )2 - a2

= ( b + c - a )( b + c + a ) (*)

Từ gt a + b + c = 2p => b + c = 2p - a

Thế vào (*) ta được

( 2p - a - a )( 2p - a + a )

= ( 2p - 2a )2p

= 4p2 - 4pa

= 4p( p - a ) ( đpcm )

26 tháng 6 2015

      a+b +c = 2p 

 =>  b +c = 2p - a

=>  ( b + c)^2  = ( 2p -a)^2

=> b^2 + 2bc + c^2 = 4p^2 - 4ap + a^2

=> 2bc + b^2 + c^2 - a^2 = 4p^2 - 4ap

=> 2bc + b^2 + c^2 - a^2 = 4p ( p-a) 

=> ĐPCM 

( Xem lại đè = 4p(p - a) chứ không phải 4b( p-a)