Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+y+z=0\)
\(\Rightarrow\left(x+y+z\right)^2=0\)
\(\Rightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
Mà \(xy+yz+xz=0\)
\(\Rightarrow x^2+y^2+z^2+2.0=0\)
\(\Rightarrow x^2+y^2+z^2=0\)
Mà \(x^2\ge0\)
\(y^2\ge0\)
\(z^2\ge0\)
\(\Rightarrow x^2+y^2+z^2\ge0\)
Mà \(x^2+y^2+z^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}\)
\(\Rightarrow B=\left(0-1\right)^{2007}+0^{2008}+\left(0+1\right)^{2009}\)
\(=\left(-1\right)^{2007}+0+1^{2009}\)
\(=-1+0+1\)
\(=0\)
Vậy ...
\(x+y+z=0< =>\left(x+y+z\right)^2=0< =>x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\)
\(< =>x^2+y^2+z^2=0< =>x=y=z=0\)
\(B=\left(-1\right)^{2007}+0+1^{2009}=0\)
x+y+z=0
\(\Rightarrow\left(x+y+z\right)^2=0\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
\(\Leftrightarrow x^2+y^2+z^2=0\)( vì xy+yz+zx=0)
Mà \(x^2+y^2+z^2\ge0\forall x,y,z\Rightarrow x=y=z=0\)
\(\Rightarrow B=\left(0-1\right)^{2007}+0^{2008}+\left(0+1\right)^{2009}\)
= -1+0+1=0
Vậy B=0
Ta có a+b+c=0⇔(a+b+c)2=0⇔a2+b2+c2+2(ab+bc+ac)=0a+b+c=0⇔(a+b+c)2=0⇔a2+b2+c2+2(ab+bc+ac)=0
+) Nếu a2+b2+c2=2a2+b2+c2=2 thì ab+bc+ac=−22=−1⇔(ab+bc+ac)2=1⇔a2b2+b2c2+c2a2+2abc(a+b+c)=1ab+bc+ac=−22=−1⇔(ab+bc+ac)2=1⇔a2b2+b2c2+c2a2+2abc(a+b+c)=1
⇔a2b2+b2c2+c2a2=1⇔a2b2+b2c2+c2a2=1
Ta có : (a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+c2a2)=4(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+c2a2)=4
⇔a4+b4+c2+2=4⇔a4+b4+c4=2⇔a4+b4+c2+2=4⇔a4+b4+c4=2
+ Nếu a2+b2+c2=1a2+b2+c2=1 làm tương tự
Ta có :\(x+y+z=0\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2xz=0\)
\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=x^2+y^2+z^2=0\) (do xy + yz + xz = 0)
Ta lại thấy \(x^2;y^2;z^2\ge0\forall x;y;z\) nên \(x^2+y^2+z^2\ge0\forall x;y;z\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=0\) thay vào S ta được :
\(S=\left(-1\right)^{2005}+\left(-1\right)^{2006}+1^{2007}=1\)
Ta có: a + b + c = 0
\(\Rightarrow\) (a + b + c)2 = 0
\(\Leftrightarrow\) a2 + b2 + c2 + 2ab + 2bc + 2ac = 0
\(\Leftrightarrow\) 2009 + 2(ab + bc + ac) = 0
\(\Leftrightarrow\) ab + bc + ac = \(\dfrac{-2009}{2}\)
\(\Leftrightarrow\) (ab + bc + ac)2 = \(\left(\dfrac{-2009}{2}\right)^2\)
\(\Leftrightarrow\) a2b2 + b2c2 + a2c2 + 2abc(a + b + c) = \(\left(\dfrac{-2009}{2}\right)^2\)
\(\Leftrightarrow\) a2b2 + b2c2 + c2a2 = \(\left(\dfrac{-2009}{2}\right)^2\) (Vì a + b + c = 0)
Lại có: a2 + b2 + c2 = 2009
\(\Rightarrow\) (a2 + b2 + c2)2 = 20092
\(\Leftrightarrow\) a4 + b4 + c4 + 2(a2b2 + b2c2 + c2a2) = 20092
\(\Leftrightarrow\) a4 + b4 + c4 + 2.\(\dfrac{2009^2}{4}\) = 20092
\(\Leftrightarrow\) a4 + b4 + c4 = 20092 - \(\dfrac{2009^2}{2}\) = 2018040,5
Chúc bn học tốt!
\(a,\)\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)\(\Leftrightarrow14+2\left(ab+bc+ac\right)=0\)\(\Rightarrow\left(ab+bc+ac\right)^2=49\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=49\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2=49\)
Ta có: \(a^2+b^2+c^2=14\Rightarrow\left(a^2+b^2+c^2\right)=196\)\(\Leftrightarrow a^{^{ }4}+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)=196\)\(\Leftrightarrow\)\(a^4+b^4+c^4=98\)