K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2016

Xét Tử số của A ta có:

\(2014+\frac{2013}{2}+\frac{2012}{3}+....+\frac{2}{2013}=1+\left(\frac{2013}{2}+1\right)+\left(\frac{2012}{3}+1\right)+....+\left(\frac{1}{2014}+1\right)\)\(TS=\frac{2015}{2}+\frac{2015}{3}+....+\frac{2015}{2014}+\frac{2015}{2015}\)

\(TS=2015.\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2015}\right)\)

\(A=\frac{2015.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)}{\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2015}\right)}=2015\)

2 tháng 1 2016

toán lớp 8 dễ quá vậy

A=2015

hình như thế

25 tháng 4 2018

            \(A=B\)

\(\Leftrightarrow\)\(\frac{x+1}{2015}+\frac{x+2}{2014}+\frac{x+3}{2013}+\frac{x+4}{2012}=-2^2\)

\(\Leftrightarrow\)\(\frac{x+1}{2015}+1+\frac{x+2}{2014}+1+\frac{x+3}{2013}+1+\frac{x+4}{2012}+1=0\)

\(\Leftrightarrow\)\(\frac{x+2016}{2015}+\frac{x+2016}{2014}+\frac{x+2016}{2013}+\frac{x+2016}{2012}=0\)

\(\Leftrightarrow\)\(\left(x+2016\right)\left(\frac{1}{2015}+\frac{1}{2014}+\frac{1}{2013}+\frac{1}{2012}\right)=0\)

\(\Leftrightarrow\)\(x+2016=0\)  (do  1/2015 + 1/2014 + 1/2013 + 1/2012  #  0)

\(\Leftrightarrow\)\(x=-2016\)

Vậy...

14 tháng 2 2020

Trl 

-Bạn đường quỳnh trang làm đúng r

Học tốt 

nhé bn

26 tháng 1 2016

[(2013/2+1)+(2012/3+1)+....(1/2014+1)+2015/2015]/(1/2+1/3+...+1/2015)=== [2015.(1/2+1/3+...1/2015)]/(1/2+1/3...+1/2015)=========>=2015

6 tháng 1 2016

Ta có:

\(\frac{2014}{1}+\frac{2013}{2}+\frac{2012}{3}+..+\frac{2}{2013}+\frac{1}{2014}\)

\(=\left(\frac{2013}{2}+1\right)+\left(\frac{2012}{3}+1\right)+...+\left(\frac{2}{2013}+1\right)+\left(\frac{1}{2014}+1\right)+1\)

\(=\frac{2015}{2}+\frac{2015}{3}+...+\frac{2015}{2013}+\frac{2015}{2014}+\frac{2015}{2015}\)

\(=2015\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}\right)\)

Do đó:   \(A=\frac{2015\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}+\frac{1}{2015}}=2015\)

 

 

7 tháng 3 2016

A=2015

Cần cách làm thì tích nha

AH
Akai Haruma
Giáo viên
9 tháng 7 2018

Lời giải:

Áp dụng BĐT AM-GM:

\(a^{2014}+\underbrace{1+1+....+1}_{1006}\geq 1007\sqrt[1007]{a^{2014}}=1007a^2\)

\(\Leftrightarrow a^{2014}+1006\geq 1007a^2\)

\(\Rightarrow a^{2014}+2013\geq 1007(a^2+1)\)

\(\Rightarrow \frac{a^{2014}+2013}{b^2+1}\geq \frac{1007(a^2+1)}{b^2+1}\). Hoàn toàn TT với các phân thức còn lại và cộng theo vế:

\(A\geq 1007\left(\frac{a^2+1}{b^2+1}+\frac{b^2+1}{c^2+1}+\frac{c^2+1}{a^2+1}\right)\)

\(\geq 1007.3\sqrt[3]{\frac{(a^2+1)(b^2+1)(c^2+1)}{(b^2+1)(c^2+1)(a^2+1)}}=3021\) (theo AM-GM)

Vậy \(A_{\min}=3021\Leftrightarrow a=b=c=1\)