Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt B = 2004+2003/2+2002/3+...+1/2004 B có 2004 phân số tách số 2004 = 1+1+1+...+1(2004 số 1) ghép 2004 số 1 vào từng nhóm như sau: B=(1+ 2003/2)+ (1+ 2002/3)+...+(1+1/2004) +1 B = 2005/2+2005/3+......+2005/2004+2005/2005 B = 2005x(1/2+1/3+....+1/2004+1/2005) Vậy A = 2005
Đặt B = 2004+2003/2+2002/3+...+1/2004
B có 2004 phân số
tách số 2004 = 1+1+1+...+1(2004 số 1)
ghép 2004 số 1 vào từng nhóm như sau:
B=(1+ 2003/2)+ (1+ 2002/3)+...+(1+1/2004) +1
B = 2005/2+2005/3+......+2005/2004+2005/2005
B = 2005x(1/2+1/3+....+1/2004+1/2005)
Vậy A = 2005
A = (2004 x 2004 x x 2004) x 2004 = C x 2004 (C có 2002 thừa số 2004).
C có tận cùng là 6 nhân với 2004 nên A có tận cùng là 4 (vì 6 x 4 = 24).
B = 2003 x 2003 x x 2003 (gồm 2004 thừa số) = (2003 x 2003 x
2003 x 2003) x x (2003 x 2003 x 2003 x 2003). Vì 2004 : 4 = 501
(nhòm) nên B có 501 nhóm, mỗi nhóm gồm 4 thừa số 2003. Tận cùng
của mỗi nhóm là 1 (vì 3 x 3 = 9 ; 9 x 3 = 27 ; 27 x 3 = 81). Vậy tận
cùng của A + B là 4 + 1 = 5. Do đó A + B chia hết cho 5.
bài 1:
A = (2004 x 2004 x x 2004) x 2004 = C x 2004 ( có 2002 thừa số 2004)
C có tận cùng là 6 nhân với 2004 nên A có tận cùng là 4 ( vì 6 x 4 = 24)
B = 2003 x 2003 x x 2003 (gồm 2004 thừa số) =( 2003 x 2003 x 2003 x 2003) x x (2003 x 2003 x 2003 x 2003 ). vì 2004 : 4 = 501 (nhóm) nên B có 501 nhóm, mỗi nhóm gồm 4 thừa số 2003. tận cùng của mỗi nhóm là 1 (vì 3 x 3 = 9 ; 9 x 3 = 27 ; 27 x 3 = 81). vậy tận cùng của A + B là 4 + 1 = 5. do đó A + B chia hết cho 5
\(A=\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{3}\right)x\left(1-\frac{1}{4}\right)x\left(1-\frac{1}{5}\right)x...x\left(1-\frac{1}{2003}\right)x\left(1-\frac{1}{2004}\right)\)
\(A=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}\times...\times\frac{2002}{2003}\times\frac{2003}{2004}\)
\(A=\frac{1}{2004}\)
\(A=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{2003}\right).\left(1-\frac{1}{2004}\right)\)
\(A=\frac{1}{2}.\frac{2}{3}.....\frac{2002}{2003}.\frac{2003}{2004}\)
\(A=\frac{1.2.....2002.2003}{2.3.....2003.2004}\)
\(A=\frac{1}{2004}\)
Có: \(B=1+4+4^2+...+4^{2009}\)
=> \(4.B=4.\left(1+4+4^2+...+4^{2019}\right)\)
\(4B=4+4^2+4^3+...+4^{2020}\)
=> \(4B-B=\left(4+4^2+4^3+...+4^{2020}\right)-\left(1+4+4^2+...+4^{2019}\right)\)
\(3B=\left(4-4\right)+\left(4^2-4^2\right)+...+\left(4^{2019}-4^{2019}\right)+\left(4^{2020}-1\right)\)
\(3B=4^{2020}-1\)
=> \(3B+1=4^{2020}-1+1\)
\(3B+1=4^{2020}\)
Vậy 3B + 1 là lũy thừa của 4.
\(B=1+4+4^2+......+4^{2019}\)
\(\Rightarrow4B=4+4^2+4^3+.......+4^{2020}\)
\(\Rightarrow4B-B=3B=4^{2020}-1\)
Ta có: \(3B+1=4^{2020}-1+1=4^{2020}\)là lũy thừa của 4 ( đpcm )
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{2003\times2004}\)
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2003}-\frac{1}{2004}\)
=\(\frac{1}{1}-\frac{1}{2004}=\frac{2004}{2004}-\frac{1}{2004}=\frac{2003}{2004}\)
Từng bài 1 thôi nhs!
a) 3A = 3 - 32 + 33 - 34 + ... -32004+ 32005
3A + A = 3 - 32 + 33 -34 + ... -32004 + 32005 +1 - 3 + 32- 33 + 34 - ....-32003+32004
4A = 32005 + 1
=> 4A - 1 = 32005 là lũy thừa của 3
=> ĐPCM