K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2017

Ta có : A = 1 + 3 + 32 + .....+ 320 

=> 3A =  3 + 32 + 3+.....+ 321 

=> 3A - A = 321 - 1

=> 2A = 321 - 1

=> A = \(\frac{3^{21}-1}{2}\) 

Nên : B - A = \(\frac{3^{21}}{2}-\frac{3^{21}-1}{2}=\frac{3^{21}-3^{21}+1}{2}=\frac{1}{2}\)

20 tháng 11 2018

a, 11 + 112 + 113 + ... + 11+ 118

= (11 + 112) + (113 + 114) + ... + (117 + 118)

= 11(1 + 11) + 113(1 + 11) + ... + 117(1 + 11)

= 11.12 + 113.12 + .... + 117.12

= 12(11 + 113 + ... + 117) chia hết cho 12

b, 7 + 7+ 73 + 74

= (7 + 73) + (72 + 74)

= 7(1 + 72) + 72(1 + 72)

= 7.50 + 72.50

= 50(7  + 72) chia hết cho 50

c, 3 + 32 + 33 + 34 + 35 + 36

= (3 + 32 + 33) + (34 + 35 + 36)

= 3(1 + 3 + 32) + 34(1 + 3 + 32)

= 3.13 + 34.13

= 13(3 + 34) chia hết cho 13

5 tháng 10 2018

vào câu trả lời tương tự

29 tháng 11 2017

a.=> 3A=3+3^2+3^3+...+3^21

=> 2A=3^21-1

=> A=(3^21-1):2

B-A=3^21:2-(3^21-1):2=(3^21-3^21+1):2=1:2

b. C=(11^9+11^8+11^7+11^6+11^5)+(11^4+11^3+11^2+11+1)

vì 11^n luôn có tận cùng là 1

=> (11^9+11^8+11^7+11^6+11^5) có tận cùng là 5

và (11^4+11^3+11^2+11+1) có tận cùng là 5

=> (11^9+11^8+11^7+11^6+11^5) chia hết cho 5 (1)

và (11^4+11^3+11^2+11+1) chia hết cho 5 (2)

Từ (1)(2) => (11^9+11^8+11^7+11^6+11^5)+(11^4+11^3+11^2+11+1) chia hết cho 5

=> C chia hết cho =>DPCM

28 tháng 11 2015

3A = 3 + 32 + .... + 321

3A - A = (3 - 3) + (32 - 32) + ..... + (320 - 320) + 321 - 1

2A = 321 - 1

Vậy A = \(\frac{3^{21}-1}{2}\)

Nên B -  A= \(\frac{3^{21}}{2}-\frac{3^{21}-1}{2}=\frac{3^{21}}{2}-\frac{3^{21}}{2}+\frac{1}{2}=\frac{1}{2}\)

2) Ta có lũy thừa của số tận cùng là 1 luôn có chữ số tận cùng là 1

C = (....1) + (...1) + ..... + (....1)

C = ..............0

C tận cùng là 0 => Chia hết cho 5

2 tháng 1 2017

chuẩn luôn

13 tháng 7 2015

bai1 

(2+22)+(23+24)+...+(259+260)

=(2+22+23)+...+(258+259+260)

A=2.(1+2)+23.(1+2)+...+259.(1+2)

A=3.2+3.23+3.59chia hết cho 3 vì có số 3

=2.(1+2+22)+...+258.(1+2+23)

A=3.(2+23+25+...+259)=7.(2+24+27+...+255+258)chia hết cho 7 vì có số 7

14 tháng 7 2015

Ai đó giải hộ mình phần b bài 2 với!!!!! Còn mỗi phần đấy là mình ngồi cắn bút...

NM
16 tháng 8 2021

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+..+\left(2^{59}+2^{60}\right)=3.2+3.2^3+3.2^5+..+3.2^{59}\) Vậy A chia hết cho 3

\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+..+\left(2^{58}+2^{59}+2^{60}\right)=7.2+7.2^4+..+7.2^{58}\) Vậy A chia hết cho 7

\(A=\left(2+2^2+2^3+2^4\right)+..+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)=2.15+2^5.15+..+2^{57}.15\) Vậy A chia hết cho 15.

\(B=\left(3+3^3+3^5\right)+..+\left(3^{1987}+3^{1989}+3^{1991}\right)=3.91+3^7.91+..+3^{1986}.91\)

mà 91 chia hết cho 13 nên B chia hết cho 13.

\(B=\left(3+3^3+3^5+3^7\right)+..+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)=3.820+3^9.820+..+3^{1985}.820\)Mà 820 chia hết cho 41 nên B chia hết cho 41.

D : để ý rằng \(11^k\) đều có đuôi là 1 

nên D có đuôi là đuôi của \(1+1+..+1=10\)

Vậy D chia hết cho 5