Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
a // b; c vuông góc với a tại M và cắt b tại N (như hình vẽ)
b, Theo quan sát chắc chắn c vuông góc với b
c, Lý luận:
Có a // b (gt)
c cắt a và b lần lượt tại M và N (hình vẽ)
=> Góc M1 = góc N2 (2 góc đồng vị)
Mà a vuông góc với c
=> góc M1 = 90o
=> góc N2 = 90o
=> b vuông góc với c
một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng vuông góc với đường thẳng còn lại
a) Ta có :
c // p \(\Leftrightarrow\hept{\begin{cases}a⊥b\\b⊥p\\a\backslash\backslash c\end{cases}}\)
Vậy c // p ( dựa theo mối quan hệ giữa vuông góc và song song )
b)GT : a cắt b tại A ; b // c
KL : a cắt c
a, C và P có quan hệ Vuông GÓC vì a vuông góc với b, b vuông góc với p
=> a và p song song ( Định Lý) (1)
Mà a song song với c (2)
Từ (1) và (2)=>c song song với p
b,
giả thiết: có 2 đường thẳng song song
1 đường thẳng cắt 1 trong 2 đường thẳng song song đó
Kết luận: đường thẳng cắt 1 trong 2 đường thẳng trên thì nó cắt đường thẳng còn lại
CHÚC BN HỌC TỐT!!!!!!!!!
NHỚ K ĐÚNG CHO MÌNH NHA
a) nếu a vuông góc với b và c vuông góc với a thì b//c
b) nếu b song song với c và a vuông góc với c thì a vuông góc với b
k mk nh mk k ai
a)
b) Ta có:
Ta có c ⊥ b vì a // b nên nếu cắt a tại a thì c cũng cắt b tại b. Vì góc C1 = 90o nên góc B2 so le trong với nó cũng bẳng 900
Vây c ⊥ b.
C) Một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng vuông góc với đường thẳng kia.
a ⊥ c
a // b
=> c ⊥ b.