Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x\sqrt{x}+1}{x-1}-\frac{x-1}{\sqrt{x}+1}\)
\(A=\frac{x\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{\left(x-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{\left(x-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)-\left(x-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{\left(x-\sqrt{x}+1\right)-\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)}\)
\(A=\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)}\)
b)Khi \(x=\frac{9}{4}\)
\(\Rightarrow\frac{\sqrt{\frac{9}{4}}}{\sqrt{\frac{9}{4}}-1}=3\)
c)\(A=\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)}< 1\)
\(\Leftrightarrow\sqrt{x}< \sqrt{x}-1\)(Voly)
=>ko có giá trị nào
\(A=\left(\frac{2+\sqrt{x}}{x-1}+\frac{2}{\sqrt{x}+1}\right)\div\frac{3}{x+\sqrt{x}}\)
a) ĐKXĐ : \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)
\(=\left(\frac{2+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\div\frac{3}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\left(\frac{2+\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\div\frac{3}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\times\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{3}\)
\(=\frac{x}{\sqrt{x}-1}\)
b) Xét biểu thức\(\frac{x}{\sqrt{x}-1}+4\left(\sqrt{x}-1\right)\)
Vì x > 1 nên áp dụng bất đẳng thức Cauchy ta có :
\(\frac{x}{\sqrt{x}-1}+4\left(\sqrt{x}-1\right)\ge2\sqrt{\frac{x}{\sqrt{x}-1}\cdot4\left(\sqrt{x}-1\right)}=2\sqrt{4x}=4\sqrt{x}\)
=> \(\frac{x}{\sqrt{x}-1}+4\left(\sqrt{x}-1\right)\ge4\sqrt{x}\)
=> \(\frac{x}{\sqrt{x}-1}+4\sqrt{x}-4\ge4\sqrt{x}\)
=> \(\frac{x}{\sqrt{x}-1}\ge4\)
Đẳng thức xảy ra khi x = 4 ( tm )
=> MinA = 4 <=> x = 4
a: \(A=\dfrac{x+2\sqrt{x}+x-3\sqrt{x}+2-x-\sqrt{x}-2}{x-4}\)
\(=\dfrac{x-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)
ĐKXĐ: \(x\ge0;x\ne4\)
\(A=\dfrac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
b. \(x=36\Rightarrow A=\dfrac{\sqrt{36}}{\sqrt{36}-2}=\dfrac{6}{6-2}=\dfrac{3}{2}\)
c. \(A=-\dfrac{1}{3}\Rightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}=-\dfrac{1}{3}\Rightarrow3\sqrt{x}=2-\sqrt{x}\)
\(\Rightarrow4\sqrt{x}=2\Rightarrow\sqrt{x}=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{4}\)
d. \(A>0\Rightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}>0\Rightarrow\sqrt{x}-2>0\Rightarrow x>4\)
e. \(A=\dfrac{\sqrt{x}-2+2}{\sqrt{x}-2}=1+\dfrac{2}{\sqrt{x}-2}\in Z\Rightarrow\sqrt{x}-2=Ư\left(2\right)\)
\(\Rightarrow\sqrt{x}-2=\left\{-2;-1;1;2\right\}\)
\(\Rightarrow\sqrt{x}=\left\{0;1;3;4\right\}\Rightarrow x=\left\{0;1;9;16\right\}\)
a: Ta có: \(A=\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
b: Thay x=36 vào A, ta được:
\(A=\dfrac{6}{6-2}=\dfrac{6}{4}=\dfrac{3}{2}\)
c: Để \(A=-\dfrac{1}{3}\) thì \(3\sqrt{x}=-\sqrt{x}+2\)
\(\Leftrightarrow4\sqrt{x}=2\)
hay \(x=\dfrac{1}{4}\)
Với 1 ≤ x < 2
A = (x + 3)/2
Với x ≥ 2
A = (x + 3)/[2√(x - 1)]
b/ Xét 1 ≤ x < 2
A ≥ (3 + 1)/2 = 2
Xét x ≥ 2
A = 2 + [√(x - 1) - 2]²/[2√(x - 2)] ≥ 2
Kết hợp 2 TH thì min là 2 khi x = 1 hoặc x = 5