Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, A =(a-2b+c)-(a-2b-c)
A = a-2b+c-a+2b+c
A = 0
b, B = (-x-y+3)-(-x+2-y)
B = -x-y+3+x-2+y
B = 1
c, C = 2.(3a+b-1)-3.(2a+b-2)
C = 6a+2b-2-6a-3b+6
C = -b + 4
d, D = 4.(x-1)-(3x+2)
D = 4x-4-3x-2
D = x-6
(-25).(-3).(-4)=-300
(-1).(-4).5.8.25=4000
C, (2ab mũ 2) chia C Với a=4;b=-6;C=12
(2ab^2):c với a=4;b=-6;c=12
(2ab^2):c=(2.4.-6):12
=(-48):12
= - 4
E, ( a mũ 2 – b mũ 2 ) : (a+b) (a–b) với a=5, b= -3
(a^2-b^2):(a+b).(a-b) với a=5;b=-3
(a^2 - b^2):(a+b).(a-b) = (5^2 - (-3)^2):(5+(-3)).(5 - (-3)
= 64
Nguyễn Ngô Gia Hân:
1.Tìm x
\(^{\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}=\frac{29}{30}}\)
\(^{\Leftrightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}+\frac{1}{\left(x+1\right)}=\frac{29}{30}}\)
\(^{\Leftrightarrow\frac{1}{1}+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+...+\left(\frac{1}{x}-\frac{1}{x}\right)-\frac{1}{x+1}=\frac{29}{30}}\)
\(^{\Leftrightarrow\frac{1}{1}+0+0+0+...+0-\frac{1}{x+1}=\frac{29}{30}}\)
\(^{\Leftrightarrow\frac{1}{1}-\frac{1}{x+1}=\frac{29}{30}}\)
\(^{\Leftrightarrow\frac{1}{x+1}=\frac{1}{1}-\frac{29}{30}}\)
\(^{\Leftrightarrow\frac{1}{x+1}=\frac{1}{30}}\)
\(^{\Leftrightarrow x+1=30}\)
\(^{\Leftrightarrow x=29}\)
Vậy x =29
Làm đc mỗi bài này thoi, tham khảo nha ~~
Bài 1 có rồi mk làm mấy bài sau nhé
Bài 2 :
Ta có :
\(3a=4b\)\(\Rightarrow\)\(\frac{b}{3}=\frac{a}{4}\) và \(b-a=-10\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{b}{3}=\frac{a}{4}=\frac{b-a}{3-4}=\frac{-10}{-1}=10\)
Do đó :
\(\frac{a}{4}=10\)\(\Rightarrow\)\(a=10.4=40\)
\(\frac{b}{3}=10\)\(\Rightarrow\)\(b=10.3=30\)
Vậy \(a=40\) và \(b=30\)
Chúc bạn học tốt ~
1) (a - b + c) - (a + c) = -b
Xét vế trái, ta có:
( a - b + c ) - ( a + c ) = a - b + c - a - c
= a - a + c - c - b
= 0 + 0 - b = - b đpcm
2) (a + b) - (b - a) + c = 2a + c
xét vế trái, ta có: ( a + b ) - ( b - a ) + c = a + b - b + a + c
= a + a + b - b + c
= 2a + c đpcm
3) -(a + b - c) + (a - b - c) = -2b
Xét vế trái, ta có: - a - b + c + a - b - c = -a + a - b - b + c - c
= 0 - ( b + b ) + 0
= -2b đpcm
4) a(b + c) - a(b + d) = a(c - d)
5) a(b - c) + a(d + c) = a(b +d)
Các phần còn lại bạn làm tương tự 3 phần đầu nhé, sử dụng tính chất phân phối của phép nhân với phép cộng, giao hoán, kết hợp và biết được 2 trường hợp phá dấu ngoặc.
+ Đối với dấu cộng: Khi phá ngoặc, các dấu trong ngoặc giữ nguyên.
+ Đối với dấu trừ: Khi phá ngoặc, các dấu trong ngoặc thay đổi ( âm thành dương và ngược lại )
1) (a – b + c) – (a + c) = -b
Xét VT: (a – b + c) – (a + c) = a -b +c -a -c
= (a -a) + (c-c) -b
= -b = VP
⇒ ĐPCM
2) (a + b) – (b – a) + c = 2a + c
Xét VT: (a + b) – (b – a) + c = a +b -b +a +c
= (a +a) + (b-b) +c
= 2a +c = VP
⇒ ĐPCM
3) - (a + b – c) + (a – b – c) = -2b
Xét VT: - (a + b – c) + (a – b – c) = -a -b +c +a -b -c
= ( -a+a) - (b+b) + (c-c)
= -2b = VP
⇒ ĐPCM
4) a(b + c) – a(b + d) = a(c – d)
Xét VT: a(b + c) – a(b + d) = ab +ac -ab -ad
= (ab -ab) + a(c -d)
= a.(c-d) = VP
⇒ ĐPCM
5) a(b – c) + a(d + c) = a(b + d)
Xét VT: a(b – c) + a(d + c) = ab -ac +ad +ac
= ( -ac +ac) + a(b+d)
= a( b+d) = VP
⇒ ĐPCM
6) a.(b – c) – a.(b + d) = -a.( c + d)
Xét VT: a.(b – c) – a.(b + d) = ab - ac -ab -ad
= (ab -ab) - a(c +d)
= -a.(c+d) = VP
⇒ ĐPCM
\(\text{- ( 2789 _ 435 ) + ( 1789 _ 1435 )}\)
\(=-2789+435+1789-1435\)
\(=\left(-2789+1789\right)+\left(435-1435\right)\)
\(=-1000+-1000\)
\(=-2000\)
\(=-\left(-2010\right)+36.41-36.\left(-59\right)\)
\(=2010+36.\left(41+59\right)\)
\(=2010+36.100\)
\(=2010+3600\)
\(=5610\)
\(-75.\left(18-65\right)-65.\left(75-18\right)\)
\(=-75.18+75.65-65.75+65.18\)
\(=18.\left(-75+65\right)+75.\left(65-65\right)\)
\(=18.\left(-10\right)+75.0\)
\(=-180\)
\(-15:x=3\)
\(x=-15:3\)
\(x=-5\)
\(-3x+8=7\)
\(-3x=-1\)
\(x=\frac{1}{3}\)
\(\left(x-6\right).\left(7-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-6=0\\7-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=6\\x=7\end{cases}}}\)
\(\Rightarrow x\in\left\{6;7\right\}\)
\(2.\left(x-3\right)-3.\left(x-5\right)=4.\left(3-x\right)-18\)
\(2x-6-3x+15=12-4x-18\)
\(2x-3x+4x=12-18-15+6\)
\(3x=-15\)
\(\Rightarrow x=-5\)
\(-a.\left(c-d\right)-d.\left(a+c\right)=-c.\left(a+d\right)\)
\(-a.c+a.d-d.a+-d.c=-c.\left(a+d\right)\)
\(-c.\left(a+d\right)+a.\left(d-d\right)=-c.\left(a+d\right)\)
\(-c.\left(a+d\right)+a.0=-c.\left(a+d\right)\)
\(\Rightarrow-c.\left(a+d\right)=-c.\left(a+d\right)\)
(3a+2).(2a–1)+(3–a).(6a+2)–17.(a–1)
=6a²−3a+4a−2+18a+6−6a²−2a−17a+17
=(6a²−6a²)+(−3a+4a+18a−2a−17a)+(17−2+6)
=0+0+21
=21
học tốt
a) A = (a - 2b + c) - (a - 2b - c)
= a - 2b + c - a + 2b + c
= (a - a) - (2b - 2b) + (c + c)
= 2c
b) tương tự trên
c) C = 2(3a + b - 1) - 3(2a + b - 2)
= 6a + 2b - 2 - 6a - 3b + 3
= (6a - 6a) + (2b - 3b) - (2 - 3)
= 0 - b + 1
= -b + 1
d) D = 4(x - 1) - (3x + 2)
= 4x - 4 - 3x - 2
= (4x - 3x) - (4 + 2)
= x - 6