Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 2x^2y-50xy=2xy(x-25)
b: 5x^2-10x=5x(x-2)
c: 5x^3-5x=5x(x^2-1)=5x(x-1)(x+1)
d: \(x^2-xy+x=x\left(x-y+1\right)\)
e: x(x-y)-2(y-x)
=x(x-y)+2(x-y)
=(x-y)(x+2)
f: 4x^2-4xy-8y^2
=4(x^2-xy-2y^2)
=4(x^2-2xy+xy-2y^2)
=4[x(x-2y)+y(x-2y)]
=4(x-2y)(x+y)
f1: x^2ỹ-y^2+y
=(x-y)(x+y)+(x+y)
=(x+y)(x-y+1)
a) \(x^2+4x+4-y^2\)
\(=\left(x^2+2.x.2+2^2\right)-y^2\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2+y\right)\left(x+2-y\right)\)
\(a,=\left(x+2\right)^2-y^2=\left(x-y+2\right)\left(x+y+2\right)\\ b=\left(x-2y\right)^2-16=\left(x-2y-4\right)\left(x-2y+4\right)\\ c,=x\left(x^2+2xy+y^2\right)=x\left(x+y\right)^2\\ d,=5\left(x+y\right)-\left(x+y\right)^2=\left(5-x-y\right)\left(x+y\right)\\ e,=x^4\left(x-1\right)+x^2\left(x-1\right)\\ =x^2\left(x^2+1\right)\left(x-1\right)\)
a) \(5x^2-12xy+9y^2-4x+4=\left(4x^2-12xy+9y^2\right)+x^2-4x+4=\left(2x-3y\right)^2+\left(x-2\right)^2\ge0\)
b) \(-x^2-2y^2+12x-4y+7=-\left(x^2-12x+36\right)-2\left(y^2+2y+1\right)+45=-\left(x-6\right)^2-2\left(y+1\right)^2+45\le45\)
c)\(4y^2+10x^2+12xy+6x+7=\left(4y^2+12xy+9x^2\right)+x^2+6x+9-2=\left(2y+3x\right)^2+\left(x+3\right)^2-2\ge-2\)
d) \(3-10x^2-4xy-4y^2=3-\left(4y^2+4xy+x^2\right)-9x^2=-\left(2y+x\right)^2-9x^2+3\le3\)
e)\(x^2-5x+y^2-xy-4y+16=\left(\frac{1}{2}x^2-xy+\frac{1}{2}y^2\right)+\frac{1}{2}\left(x^2-10x+25\right)+\frac{1}{2}\left(y^2-8y+16\right)-\frac{9}{2}=\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x-5\right)^2+\frac{1}{2}\left(y-4\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)Phần e) mới nghĩ đk v, tui biết đáp án sao do k xảy ra dấu bằng
a)x2-4x+5+y2+2y=x2-4x+4+y2+2y+1=(x-2)2+(y+1)2
b)2x2+y2-2xy+10x+25=x2-2xy+y2+x2+10x+25=(X+Y)2+(X+5)2
c)a2+2ab+5b2+4b+1=a2+2ab+b2+4b2+4b+1=(a+b)2+(2b+1)2
d)2x2+2b2+4x+4b+4=2x2+4x+2+2b2+4b+2=(\(\sqrt{2}x+\sqrt{2}\))2+(\(\sqrt{2}b+\sqrt{2}\))2
e)X4+13-6x2+4y+y2=x4-6x2+9+y2+4y+4=(x2-3)2+(y+2)2
f)-6x+9x2-8y+4y+y2+5= 9x2-6x+1+4y2-8y+4= (3x-1)2+(2y-2)2
a) \(4x^2-12x+9\)
\(=\left(2x\right)^2-2.2x.3+3^2\)
\(=\left(2x-3\right)^2\)
b) \(4x^2+4x+1\)
\(=\left(2x\right)^2+2.2x.1+1^2\)
\(=\left(2x+1\right)^2\)
c) \(1+12x+36x^2\)
\(=1^2+2.1.6x+\left(6x\right)^2\)
\(=\left(1+6x\right)^2\)
d) \(9x^2-24xy+16y^2\)
\(=\left(3x\right)^2-2.3x.4y+\left(4y\right)^2\)
\(=\left(3x-4y\right)^2\)
e) \(\frac{x^2}{4}+2xy+4y^2\)
\(=\left(\frac{x}{2}\right)^2+2.\frac{x}{2}.2y+\left(2y\right)^2\)
\(=\left(\frac{x}{2}+2y\right)^2\)
f) \(-x^2+10x-25\)
\(=-\left(x^2-10x+25\right)\)
\(=-\left(x^2-2.5x+5^2\right)\)
\(=-\left(x-5\right)^2\)
g) \(-16a^4b^6-24a^5b^5-9a^6b^4\)
\(=-a^4b^4\left(16b^2+24ab+9a^2\right)\)
\(=-a^4b^4\left[\left(4b\right)^2+2.4b.3a+\left(3a\right)^2\right]\)
\(=-a^4b^4\left(4b+3a\right)^2\)
h) \(25x^2-20xy+4y^2\)
\(=\left(5x\right)^2-2.5x.2y+\left(2y\right)^2\)
\(=\left(5x-2y\right)^2\)
i) \(25x^4-10x^2y+y^2\)
\(=\left(5x^2\right)^2-2.5x^2y+y^2\)
\(=\left(5x^2-y\right)^2\)