K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2016

\(A=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{1}{26.31}\)

    \(=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}+...+\frac{1}{26}-\frac{1}{31}\)

    \(=1+\left(-\frac{1}{6}+\frac{1}{6}\right)+\left(-\frac{1}{11}+\frac{1}{11}\right)+...+\left(-\frac{1}{26}+\frac{1}{26}\right)-\frac{1}{31}\)

 \(=1-\frac{1}{31}=\frac{31-1}{31}\)

\(=\frac{30}{31}\)

Vậy \(A=\frac{30}{31}\)

17 tháng 9 2016

\(A=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{26.31}\)

\(\Rightarrow A=\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{26}-\frac{1}{31}\)

\(\Rightarrow A=\frac{1}{1}-\frac{1}{31}\)

\(\Rightarrow A=\frac{30}{31}\)

16 tháng 4 2017

\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}\)

\(=5^2\left(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+\frac{1}{16.21}+\frac{1}{21.26}\right)\)

\(=25.\frac{1}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{21}-\frac{1}{26}\right)\)

\(=5\left(1-\frac{1}{26}\right)\)

\(=5.\frac{25}{26}\)

\(=\frac{125}{26}\)

8 tháng 7 2016

\(\Rightarrow A=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+.....+\frac{1}{26}-\frac{1}{31}\)

\(\Rightarrow A=1-\frac{1}{31}\)

\(\Rightarrow A=\frac{30}{31}\)

8 tháng 7 2016

\(A=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{26.31}\)

\(=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{26}-\frac{1}{31}\)

\(=1+\left(-\frac{1}{6}+\frac{1}{6}\right)+\left(-\frac{1}{11}+\frac{1}{11}\right)+...+\left(-\frac{1}{26}+\frac{1}{26}\right)-\frac{1}{31}\)

\(=1-\frac{1}{31}=\frac{31-1}{31}=\frac{30}{31}\)

\(\text{Vậy }A=\frac{30}{31}\).

27 tháng 4 2019

\(S=\frac{5^2}{1\cdot6}+\frac{5^2}{6\cdot11}+\frac{5^2}{11\cdot16}+\frac{5^2}{16\cdot21}+\frac{5^2}{21\cdot26}\)

\(S=\frac{25}{1\cdot6}+\frac{25}{6\cdot11}+\frac{25}{11\cdot16}+\frac{25}{16\cdot21}+\frac{25}{21\cdot26}\)

\(S=5\left[\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+\frac{5}{11\cdot16}+\frac{5}{16\cdot21}+\frac{5}{21\cdot26}\right]\)

\(S=5\left[1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{21}-\frac{1}{26}\right]\)

\(S=5\left[1-\frac{1}{26}\right]=5\cdot\frac{25}{26}=\frac{125}{26}\)

27 tháng 4 2019

Bài làm

S = \(\frac{5^2}{1.6}\)\(\frac{5^2}{6.11}\)\(\frac{5^2}{11.16}\)\(\frac{5^2}{16.21}\)+\(\frac{5^2}{21.26}\)

S : 5 = \(\frac{5}{1.6}\)\(\frac{5}{6.11}\)\(\frac{5}{11.16}\) + \(\frac{5}{16.21}\) + \(\frac{5}{21.26}\)

S : 5 = 1 - \(\frac{1}{6}\)\(\frac{1}{6}\)\(\frac{1}{11}\) + \(\frac{1}{11}\)\(\frac{1}{16}\)\(\frac{1}{16}\)\(\frac{1}{21}\)\(\frac{1}{21}\)\(\frac{1}{26}\)

S : 5 = 1 - \(\frac{1}{26}\)

S : 5 = \(\frac{25}{26}\)

S = \(\frac{125}{26}\)

10 tháng 3 2017

\(\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{96.101}\)

\(=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{96}-\frac{1}{101}\)

\(=1-\frac{1}{101}\)

\(=\frac{100}{101}\)

10 tháng 3 2017

đặt biểu thức là A

5A=(1/1x6+1/6x11+...+1/96x101)x5=5/1x6+5/6x11+...+5/96x101

5A=6-1/1x6+11-6/6x11+...+101-96/96x101

5A=6/1x6-1/1x6+11/6x11-6/6x11+...+101/96x101-96/96x101

5A=1-1/6+1/6-1/11+...+1/96-1/101(sau khi rút gọn các phân số)

5A=1-1/101(còn lại sau khi trừ)

5A=100/101

A=100/101:5=20/101