Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^3}{8}=\frac{y^3}{27}=\frac{z^3}{64};x^2+2y^2+3z^2\)\(=-650\)
<=>\(\frac{x^3}{2^3}=\frac{y^3}{3^3}=\frac{z^3}{4^3}\)
<=>\(\frac{x^2}{2^2}=\frac{2y^2}{2.3^2}=\frac{3z^2}{3.4^2}\)
=>\(\frac{x^2}{4}=\frac{2y^2}{18}=\frac{3z^2}{48}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{4}=\frac{2y^2}{18}=\frac{3z^2}{48}=\frac{x^2+2y^2-3z^2}{4+18-48}=\frac{-650}{-26}=25\)
=>\(\hept{\begin{cases}\frac{x}{2}=25\\\frac{y}{3}=25\\\frac{z}{4}=25\end{cases}}\)=>\(\hept{\begin{cases}x=50\\y=75\\z=100\end{cases}}\)
vậy\(\hept{\begin{cases}x=50\\y=75\\z=100\end{cases}}\)
cậu viết chắc lâu lắm nhỉ
a)x=4, y=6 ,z=10 c)x=6,y=9,z=12 e)x=-3,y=-5,z=154/3
b)x=12,y=16,z=28 d) y=-28, x=-42,z=-20 f)x=36,y=24,z=9
g)nản h)x=1,y=2,z=3
làm mất bao nhiêu lâu. k đúng giùm
a) ko có " z" sao làm!!
b) áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{7}\) =\(\frac{z-x}{7-4}=\frac{16}{3}\)
=> x/3 = 16/3 => x = 16
=> y/4 = 16/3 => y = ...
=> z/7 = 16/3 => z = ...
c)\(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)và\(2x^2+2y^2-3z^2=-100\)
đặt\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)
\(\Rightarrow\frac{x}{3}=k\Rightarrow x=3k\)
\(\Rightarrow\frac{y}{4}=k\Rightarrow y=4k\)
\(\Rightarrow\frac{z}{5}=k\Rightarrow z=5k\)
mà\(2x^2+2y^2-3z^2=-100\)
thay\(6k^2+8k^2-15k^2=-100\)
\(k^2\left(6+8-15\right)=-100\)
\(k^2.\left(-1\right)=-100\)
\(k^2=100\)
\(\Rightarrow k=\pm10\)
bạn thế vào nha
a) Vì \(3x=\frac{2}{3}y=\frac{4}{5}z\)
\(\Rightarrow3x:12=\frac{2}{3}y:12=\frac{4}{5}z:12\)
\(\Rightarrow\frac{x}{4}=\frac{y}{18}=\frac{z}{15}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{4}=\frac{y}{18}=\frac{z}{15}=\frac{x-y-z}{4-18-15}=\frac{10}{-29}=\frac{-10}{29}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{-10}{29}.4=\frac{-40}{29}\\y=\frac{-10}{29}.18=\frac{-180}{29}\\z=\frac{-10}{29}.15=\frac{-150}{29}\end{cases}}\)
Vậy ...
b) Ta có; \(\frac{x^3}{8}=\frac{y^3}{27}=\frac{z^3}{64}\)và \(x^2+2y^2-3z^2=-650\left(1\right)\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=4k\end{cases}\left(2\right)}\)
Thay (2) vào (1) ta được:
\(\left(2k\right)^2+2.\left(3k\right)^2-3.\left(4k\right)^2=-650\)
\(\Leftrightarrow4k^2+18k^2-48k^2=-650\)
\(\Leftrightarrow-26k^2=-650\)
\(\Leftrightarrow k^2=25\)
\(\Leftrightarrow k=\pm5\)
TH1: Thay k=5 vào (2) ta được:
\(\hept{\begin{cases}x=2.5=10\\y=3.5=15\\z=4.5=20\end{cases}}\)
TH2: Thay k=-5 vào (2) ta được:
\(\hept{\begin{cases}x=-5.2=-10\\y=-5.3=-15\\z=-5.4=-20\end{cases}}\)
Vậy \(\left(x,y,z\right)=\left\{\left(10;15;20\right);\left(-10;-15;-20\right)\right\}\)