K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2017

\(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{27.30}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{27}-\dfrac{1}{30}\)

\(=1-\dfrac{1}{30}\)

\(=\dfrac{29}{30}\)

Chúc bạn học tốtok

3 tháng 5 2017

A= 3/1.4+ 3/4.7+ 3/7.10+...+ 3/27.30

= 1/3 . ( 3- 3/4 + 3/4- 3/7 +3/7- 3/10+... + 3/27- 3/30)

= 1/3 . (3 - 3/30)= 1/3 . 87/30= 87/90=29/30

7 tháng 5 2017

\(B=3.\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+........+\frac{1}{27.30}\right)\)  

\(B=3.\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-.......-\frac{1}{27}+\frac{1}{27}-\frac{1}{30}\right)\) 

\(B=1.\left(\frac{1}{1}-\frac{1}{30}\right)\) 

\(B=\frac{29}{30}\)

7 tháng 5 2017

B =\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{27.30}\)

B = \(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{27}-\frac{1}{30}\)

B =\(\frac{1}{1}-\frac{1}{30}\)

B =\(\frac{29}{30}\)

24 tháng 3 2019

a, \(\frac{9}{1.2}+\frac{9}{2.3}+...+\frac{9}{99.100}\)

=9.(\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\))

= 9(1 -\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\))

=9(1-\(\frac{1}{100}\))

A=\(\frac{891}{100}\)

b, \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{27.30}\)

=1-(\(\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{27}-\frac{1}{30}\))

=1-\(\frac{1}{30}\)

B=\(\frac{29}{30}\)

24 tháng 3 2019

a) \(\dfrac{9}{1.2}+\dfrac{9}{2.3}+...+\dfrac{9}{99.100}\)

\(=9\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\right)\)

\(=9\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(=9\left(1-\dfrac{1}{100}\right)\)

\(=9.\dfrac{99}{100}\)

\(=\dfrac{891}{100}\)

b) \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{27.30}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{27}-\dfrac{1}{30}\)

\(=1-\dfrac{1}{30}\)

\(=\dfrac{29}{30}\)

10 tháng 5 2016

A = 1/1 -1/4 +1/4 - 1/7 +1/7 ........+1/40 - 1/43 

A = 1/1 - 1/43 

A = 42/43

10 tháng 5 2016

A=1 - 1/4 + 1/4 - 1/7 + .... + 1/40 - 1/43

  = 1 - 1/43 

  = 42/43

2 tháng 3 2023

`3/1.4+3/4.7+3/7.10+...+3/94.97`

`=1/1-1/4+1/4-1/7+1/7-1/10+...+1/94-1/97`

`=1-1/97`

`=96/97`

2 tháng 3 2023

\(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{94.97}\\ =1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{94}-\dfrac{1}{97}\\ =1-\dfrac{1}{97}=\dfrac{96}{97}\)

9 tháng 3 2017

Sửa lại đề :  \(A=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.14}+\frac{3}{14.17}\)

\(A=3.\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.14}+\frac{3}{14.17}\right)\)

\(A=3.\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\right)\)

\(A=\frac{3}{3}\left(1-\frac{1}{17}\right)\)

\(A=\frac{16}{17}\)

P/S : Ở chỗ 3/11.14 có lẽ bạn ghi sai đề , mình nghĩ là 3/10.14 mới đúng

26 tháng 3 2021

Sửa lại đề :  A=31.4+34.7+37.10+310.14+314.17A=31.4+34.7+37.10+310.14+314.17

A=3.(11.4+14.7+17.10+110.14+314.17)A=3.(11.4+14.7+17.10+110.14+314.17)

A=3.13(1−14+14−17+17−110+110−114+114−117)A=3.13(1−14+14−17+17−110+110−114+114−117)

A=33(1−117)A=33(1−117)

A=1617A=1617

P/S : Ở chỗ 3/11.14 có lẽ bạn ghi sai đề , mình nghĩ là 3/10.14 mới đúng

25 tháng 3 2022

\(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+\dfrac{3}{10\cdot13}+\dfrac{3}{13\cdot16}\)

\(=\dfrac{3\cdot1}{1\cdot4}+\dfrac{3\cdot1}{4\cdot7}+\dfrac{3\cdot1}{7\cdot10}+\dfrac{3\cdot1}{10\cdot13}+\dfrac{3\cdot3}{13\cdot16}\)

\(=3\cdot\left(\dfrac{1}{1\cdot4}+\dfrac{1}{4\cdot7}+\dfrac{1}{7\cdot10}+\dfrac{1}{10\cdot13}+\dfrac{1}{13\cdot16}\right)\)

\(=3\cdot\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{16}\right)\)

\(=3\cdot\left(1-\dfrac{1}{16}\right)\)

\(=3\cdot\left(\dfrac{16}{16}-\dfrac{1}{16}\right)\)

\(=3\cdot\dfrac{15}{16}\)

\(=\dfrac{45}{16}\)

13 tháng 7 2022

ngu :3

9 tháng 4 2017

a) \(P=\dfrac{1}{1.2}+\dfrac{2}{2.4}+\dfrac{3}{4.7}+...\dfrac{10}{46.56}\)

\(P=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...\dfrac{1}{46}-\dfrac{1}{56}\)

\(P=1-\dfrac{1}{56}\)

\(P=\dfrac{55}{56}\)

b) \(A=\dfrac{3}{1.2}+\dfrac{3}{2.3}+\dfrac{3}{3.4}+...+\dfrac{3}{99.100}\)

\(A=3\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)\)

\(A=3\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(A=3\left(1-\dfrac{1}{100}\right)\)

\(A=3.\dfrac{99}{100}\)

\(A=\dfrac{297}{100}\)

c) \(B=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{100.103}\)

\(B=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{100}-\dfrac{1}{103}\)

\(B=1-\dfrac{1}{103}\)

\(B=\dfrac{102}{103}\)

d) \(C=\dfrac{5}{1.4}+\dfrac{5}{4.7}+\dfrac{5}{7.10}+...+\dfrac{5}{100.103}\)

\(C=\dfrac{5}{3}\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{100.103}\right)\)

\(C=\dfrac{5}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{100}-\dfrac{1}{103}\right)\)

\(C=\dfrac{5}{3}\left(1-\dfrac{1}{103}\right)\)

\(C=\dfrac{5}{3}.\dfrac{102}{103}\)

\(C=\dfrac{170}{103}\)

e) \(D=\dfrac{7}{1.5}+\dfrac{7}{5.9}+\dfrac{7}{9.13}+...+\dfrac{7}{101.105}\)

\(D=\dfrac{7}{4}\left(\dfrac{4}{1.5}+\dfrac{4}{5.9}+\dfrac{4}{9.13}+...+\dfrac{4}{101.105}\right)\)

\(D=\dfrac{7}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{101}-\dfrac{1}{105}\right)\)

\(D=\dfrac{7}{4}\left(1-\dfrac{1}{105}\right)\)

\(D=\dfrac{7}{4}.\dfrac{104}{105}\)

\(D=\dfrac{26}{15}\)

25 tháng 4 2015

dễ mà

Gọi tổng đó là S. Theo đề \(S=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{40.43}=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{40}-\frac{1}{43}\)

\(S=1-\frac{1}{43}=\frac{42}{43}\)

13 tháng 7 2022

dễ mà sai