K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2017

a) \(2n+5⋮n+1\)

\(\Rightarrow2\left(n+1\right)+3⋮n+1\)

Mà \(n+1⋮n+1\)

\(\Rightarrow2\left(n+1\right)⋮n+1\)

\(3⋮n+1\)

\(\Rightarrow n+1\inƯ\left(3\right)=\left\{1;3\right\}\)

Th1: n + 1 = 1                                                                              Th2: n + 1 = 3

            n   = 1 - 1                                                                                      n = 2

              n = 0

Vậy \(n\in\left\{0;2\right\}\)

b) \(3n+25⋮n+7\)

\(\Rightarrow3\left(n+7\right)+4⋮n+7\)

Mà \(n+7⋮n+7\)

\(\Rightarrow3\left(n+7\right)⋮n+7\)

\(4⋮n+7\)

\(n+7\inƯ\left(4\right)=\left\{1;2;4\right\}\)

Vì n là số tự nhiên (theo đề bài của bạn có hay k thì mk k rõ, bn k ghi mà!!!) nên n + 7\(\ge7\)

Vậy k có giá trị thoả mãn cho n với n là số tự nhiên ( Nếu n thuộc Z thì bn tự tính nhen

14 tháng 11 2017

Trên onlinemath cũng có mấy bài tương tự đó bn

d) Để \(\dfrac{n+1}{2n+1}\in Z\) thì \(n+1⋮2n+1\)

\(\Leftrightarrow1⋮2n+1\)

\(\Leftrightarrow2n+1\in\left\{1;-1\right\}\)

\(\Leftrightarrow2n\in\left\{0;-2\right\}\)

hay \(n\in\left\{0;-1\right\}\)

Mk trả lời mỗi câu khó nha!!!

d*) \(\dfrac{n+1}{2n+1}\in Z\) 

Để \(\dfrac{n+1}{2n+1}\in Z\) thì \(n+1⋮2n+1\) 

\(n+1⋮2n+1\) 

\(\Rightarrow2.\left(n+1\right)⋮2n+1\) 

\(\Rightarrow2n+2⋮2n+1\) 

\(\Rightarrow2n+1+1⋮2n+1\) 

\(\Rightarrow1⋮2n+1\) 

\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\) 

Ta có bảng giá trị:

2n+1-11
n-10

Vậy \(n\in\left\{-1;0\right\}\)

29 tháng 10 2018

Vì \(19⋮n+4\)

\(\Rightarrow n+4\varepsilon\left\{1;19\right\}\)

Vì n là STN nên n=19-4=15

b,\(\hept{\begin{cases}n+13⋮n+6\\n+6⋮n+6\end{cases}\Rightarrow n+13-n-6⋮n+6}\)

\(\Leftrightarrow7⋮n+6\)

\(\Rightarrow n+6\varepsilon\left\{1;7\right\}\)

vì n là STN nên n=7-6=1

c,\(\hept{\begin{cases}2n+25⋮n+6\\n+6⋮n+6\end{cases}\Rightarrow\hept{\begin{cases}2n+25⋮n+6\\2n+12⋮n+6\end{cases}}}\)

\(\Rightarrow2n+25-2n-12⋮n+6\)

\(\Leftrightarrow13⋮n+6\)

\(\Rightarrow n+6\varepsilon\left\{1;13\right\}\)

vì n là STN nên n=13-6=7

các phần còn lại bạn nhân vào rồi trừ hết x đi như phần c nha

29 tháng 10 2018

trần tuấn anh ơi bạn có thể trả lời hết luôn 3 câu còn lại ko,hộ mk 1 chút nha

20 tháng 11 2019

a) Ta có:

\(n^2+3n+2\)

\(=n^2+n+2n+2\)

\(=n\left(n+1\right)+2\left(n+1\right)\)

\(=\left(n+1\right)\left(n+2\right)\)

Vì \(n+1⋮n+1\)

\(\Rightarrow n+2⋮n+1\)

Ta có:

\(n+2=n+1+1\)

Vì \(n+1⋮n+1\)

\(\Rightarrow1⋮n+1\)

\(\Rightarrow n+1\inƯ\left(1\right)\)

\(\RightarrowƯ\left(1\right)\in\left\{-1;1\right\}\)

\(\Rightarrow\hept{\begin{cases}n+1=-1\\n+1=1\end{cases}\Rightarrow\hept{\begin{cases}n=-2\left(l\right)\\n=0\left(tm\right)\end{cases}}}\)

Vậy \(n=0\)

25 tháng 7 2016

gọi UCLN(2n+1,3n+1)=d

=>6n+2 chia hết cho d

6n+3 chia hết cho d

=>1 chia hết cho d

=>d=1

=>2n+1/3n+1 tối giản

25 tháng 7 2016

các bạn giải giúp mình câu b với 

14 tháng 11 2017

a)  Gọi ƯCLN(3n+1,6n+1)=d

=> 3n+1 và 6n+1 chia hết chưa d

=> 2(3n+1) và 6n+1 chia hết chưa d

=>6n+2 và 6n+1 chia hết cho d

=>(6n+2)-(6n+1)=1 chia hết cho d

=>d=1

=> 3n+1 và 6n+1 nguyên tố cùng nhau

b, Gọi ƯCLN(2n+3,3n+4)=d

=>2n+3 và 3n+4 chia hết cho d

=>3(2n+3) và 2(3n+4) chia hết cho d

=>6n+9 và 6n+8 chia hết cho d

=>(6n+9)-(6n+8)=1 chia hết cho d

=>d=1

=>2n+3 và 3n+4 nguyên tố cùng nhau

12 tháng 1 2017

a) n+3=n-2+5 Để n+3 chia hết chp n-2 thì 5 chia hết cho n-2 => n-2 thuộc ước của 5 => n-2 thuộc { -5;-1:1;5}

=> n= tự tìm

5 tháng 1 2016

a)n+2={1;2;4;8;16}

n={-1;0;2;6;14}

b)(n-4)chia hết cho(n-1)

(n-1-3) chia hết cho(n-1)

Vì (n-1)chia hết cho (n-1) suy ra -3 chia hết cho (n-1)

Vậy n-1 thuộc Ư(-3)={1;3;-1;-3}

suy ra n={1;4;0;-2}

c) 2n+8 thuộc B(n+1)

suy ra n+1 chia het cho 2n+8

suy ra 2n+2 chia het cho 2n+8

suy ra (2n+8)-6 chia het cho2n+8

Vi 2n+8 chia het cho 2n+8 nen -6 chia het cho 2n+8

suy ra 2n+8 thuộc {1;2;3;6;-1;-2;-3;-6}

mà 2n+8 là số nguyên chẵn( chẵn + chẵn = chẵn)

suy ra 2n+8 thuộc{2;6;-2;-6}

suy ra 2n thuộc{-6;-2;-10;-14}

suy ra n thuộc {-3;-1;-5;-7}

d) 3n-1 chia het cho n-2

suy ra [(3n-6)+5chia hết cho n-2

Vì 3n-6 chia hết cho n-2 suy ra 5 chia hết cho n-2

suy ra n-2 thuộc{1;5;-1;-5}

suy ra n thuộc{3;7;1;-3}

e)3n+2 chia hết cho 2n+1

suy ra [(6n+3)+1] chia hết cho 2n+1

Vì 6n+3 chia hết cho 2n+1 nên 1 chia hết cho 2n+1

suy ra 2n+1 thuộc{1;-1}

suy ra 2n thuộc {0;-2}

suy ra n thuộc {0;-1}