Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA có
4-2/2*4+6-4/4*6+8-6/6*8+...+2016-2014/2014*2016
=1/2-1/4+1/4-1/6+...+1/2014-1/2016
=1/2+1/4-1/4+1/6-1/6+...+1/2014-1/2014-1/2016
=1/2-1/2016
=1007/2016
2[1/2X4+1/4X6+1/6X8+...+1/Xx(X+2)]=11/45x2
2/2x4+2/4x6+2/6x8+....+2/Xx(X+2)=22/45
1/2-1/4+1/4-1/6+1/6-1/8+...+1/x-1/x+2=22/45
1/2-1/x+2=22/45
1/x+2=1/2-22/45
1/x+2=1/90
=>x+2=90
=>x=88
vậy x=88
\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{x\left(x+2\right)}=\frac{11}{45}\)
\(\Rightarrow\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{x\left(x+2\right)}=\frac{22}{45}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{22}{45}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+2}=\frac{22}{45}\)
\(\Rightarrow\frac{1}{x+2}=\frac{1}{2}-\frac{22}{45}\)
\(\Rightarrow\frac{1}{x+2}=\frac{1}{90}\)
=>x+2=90
=>x=90-2
=>x=88
vậy x=88
\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{98.100}\)
\(=\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+....+\frac{2}{98.100}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{98}-\frac{1}{100}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{100}\right)=\frac{49}{200}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}+\frac{1}{14}\)
\(=\frac{1}{2}-\frac{1}{14}\)
\(=\frac{3}{7}\)
\(\frac{2}{2\times4}+\frac{2}{4\times6}+\frac{2}{6\times8}+\frac{2}{8\times10}+\frac{2}{10\times12}+\frac{2}{12\times14}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}+\frac{1}{10}-\frac{1}{10}+\frac{1}{12}-\frac{1}{14}+\frac{1}{14}\)
\(=\frac{1}{2}-\frac{1}{14}\)
\(=\frac{7}{14}-\frac{1}{14}\)
\(=\frac{6}{14}=\frac{3}{7}\)
\(a,\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+....+\frac{4}{16.18}+\frac{4}{18.20}\)
\(=\frac{4}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{18}-\frac{1}{20}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{20}\right)\)
\(=2.\frac{9}{20}\)
\(=\frac{9}{10}\)
\(b,\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
\(\frac{2}{2\times4}+\frac{2}{4\times6}+\frac{2}{6\times8}+\frac{2}{8\times10}\)
\(=\frac{2}{2}-\frac{2}{4}+\frac{2}{4}-\frac{2}{6}+\frac{2}{6}-\frac{2}{8}+\frac{2}{8}-\frac{2}{10}\)
\(=\frac{2}{2}-\frac{2}{10}\)
\(=1-\frac{1}{5}\)
\(=\frac{4}{5}\)
A=\(\frac{2}{2x4}+\frac{2}{4x6}+.........+\frac{2}{2014x2016}\)
=\(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+.............+\frac{1}{2014}-\frac{1}{2016}\)
=\(\frac{1}{2}-\frac{1}{2016}\)
=\(\frac{1008}{2016}-\frac{1}{2016}\)
=\(\frac{1007}{2016}\)
mình nghĩ nguyễn hung phat làm đúng sồi