Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\left(x+1+5\right)\left(x+1-5\right)=\left(x+6\right)\left(x-4\right)\)
b: =(1-2x)(1+2x)
c: \(=\left(2-3x\right)\left(4+6x+9x^2\right)\)
d: =(x+3)^3
e: \(=\left(2x-y\right)^3\)
f: =(x+2y)(x^2-2xy+4y^2)
a: \(x^4+4=x^4+4x^2+4-4x^2=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)
c: \(x^3-125=\left(x-5\right)\left(x^2+5x+25\right)\)
\(\dfrac{1}{8}x^3-64=\left(\dfrac{1}{2}x-4\right)\left(\dfrac{1}{4}x^2+2x+16\right)\)
d: \(=\left(2x+5y\right)^3\)
a: Ta có: \(\left(x^2+x-1\right)^2-\left(x^2+2x+3\right)^2\)
\(=\left(x^2+x-1-x^2-2x-3\right)\left(x^2+x-1+x^2+2x+3\right)\)
\(=\left(-x-4\right)\left(2x^2+3x+2\right)\)
b: Ta có: \(\left(x-3\right)^2-16\)
\(=\left(x-3-4\right)\left(x-3+4\right)\)
\(=\left(x+1\right)\left(x-7\right)\)
c: \(y^2+16y+64=\left(y+8\right)^2\)
Làm bài 1 thôi !! Mấy bài kia tương tự . Tìm nhân tử chung ra .
a) \(m^2-n^2=\left(m-n\right)\left(m+n\right)\)
b) \(\left(x^2+x-1\right)^2-\left(x^2+2x+3\right)^2=\left(x^2+x-1+x^2+2x+3\right)\left(x^2+x-1-x^2-2x-3\right)\)
\(=\left(2x^2+3x+2\right)\left(-x-4\right)\)
c) \(-16+\left(x-3\right)^2=\left(x-3+4\right)\left(x-3-4\right)=x\left(x-7\right)\)
d) \(64+16y+y^2=\left(y+8\right)\left(y+8\right)\)
a)\(x^3+3xy+y^3-1\)
\(=x^3+3x^2y+3xy^2+y^3-1-3x^2y-3xy^2+3xy\)
\(=\left(x+y\right)^3-1^3-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1\right)-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1-3xy\right)\)
\(=\left(x+y-1\right)\left(x^2-xy+y^2+x+y+1\right)\)
b) Đặt \(B=3x^2+22xy+11x+37y+7y^2+10\)
Giả sử \(B=\left(ax+by+c\right)\left(mx+ny+p\right)\)
\(=amx^2+anxy+apx+bmxy+bny^2+bpy+cmx+cny+cp\)
\(=amx^2+\left(an+bm\right)xy+\left(ap+cm\right)x+bny^2+\left(bp+cn\right)y+cp\)
Ta được hệ: \(\left\{{}\begin{matrix}am=3;an+bm=22\\ap+cm=11;bn=7\\bp+cn=37;cp=10\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=3;b=1\\c=5;m=1\\n=7;p=2\end{matrix}\right.\)
Vậy B phân tích được thành \(\left(3x+y+5\right)\left(x+7y+2\right)\).
a/ =(x+y)3-1-3xy(x+y-1)
=(x+y-1)(x2+2xy+y2+xy+1)-3xy(x+y-1)
=(x+y-1)(x2+y2+1)
mơn nha
\(a,=4x^2+4x+1\\ b,=9-12y+4y^2\\ c,=\dfrac{x^2}{4}-xy+y^2\\ d,=\dfrac{25}{4}-5x+x^2\\ e,=4x^2+32xy+64y^2\\ f,=9x^2-30xy+25y^2\)
Đề là gì bạn nhỉ?
\(16-\left(x-3\right)^2=4^2-\left(x-3\right)^2=\left(4-x-3\right)\left(4+x-3\right)\)
\(64+16y+y^2=y^2+2y4+4^2=\left(y+4\right)^2\)
\(1,24^2-0,24^2=\left(1,24-0,24\right)\left(1,24+0,24\right)=1.1,48=1,48\)
\(\frac{1}{8}-8x^3=\left(\frac{1}{2}\right)^3-\left(2x\right)^3=\left(\frac{1}{2}-2x\right)\left(\frac{1}{4}+x+4x^2\right)\)
\(100-\left(3x-y\right)^2=10^2-\left(3x-y\right)=\left(10-3x+y\right)\left(10+3x-y\right)\)
\(64x^2-\left(8x+3\right)^2\)
\(=\left(8x\right)^2-\left(8x+3\right)^2\)
\(=\left(8x-8x-3\right)\left(8x+8x+3\right)\)
\(=\left(-3\right)\left(16x+3\right)\)
\(=-48x-9\)