K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2020

Ghi đầy đủ nha

6 tháng 3 2022

bn có thể ghi rõ ràng đc ko?

1 tháng 2 2017

1) 5.( x - 6 ) - 2.( x + 9 ) = 21

           5x - 30 - 2x - 18 = 21

                        3x - 48 = 21

                               3x = 21 + 48

                               3x = 69

                                 x = 23

2) 2.( x + 3 ) + 3.( x +  1 ) = 15 - ( - 9 )

               2x + 6 + 3x + 3 = 24

                            5x + 9 = 24

                                  5x = 24 - 9 

                                  5x = 15

                                   x = 3

3) ( - x + 5 ).(3 - x ) = 0

=> - x + 5 = 0 hoặc 3 - x = 0

=> x = 5 hoặc x = 3

4) ( x - 12 ) - 15 = ( 20 - 7 ) - ( 18 + x )

        x - 12 - 15 = 13 - 18 - x 

               x - 27 = - 5 - x 

                x + x = - 5 + 27

                     2x = 22

                       x = 11

5) x - ( 17 - 8 ) = 5 + ( 10 - 3x )

               x - 9 = 5 + 10 - 3x

            x + 3x = 15 + 9

                  4x = 24

                    x = 6

28 tháng 3 2020

Hỏi đáp ToánHỏi đáp Toán

Bài 46:

11: Ta có: \(-4\left|x-2\right|=-8\)

\(\Leftrightarrow\left|x-2\right|=2\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=2\\x-2=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)

Vậy: x∈{0;4}

12: Ta có: \(5\left|x+2\right|=-10\cdot\left(-2\right)\)

\(\Leftrightarrow5\left|x+2\right|=20\)

\(\Leftrightarrow\left|x+2\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=4\\x+2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-6\end{matrix}\right.\)

Vậy: x∈{-6;2}

13: Ta có: \(6\left|x-2\right|=18:\left(-3\right)\)

\(\Leftrightarrow6\left|x-2\right|=-6\)(1)

Ta có: \(\left|x-2\right|\ge0\forall x\)

\(\Rightarrow6\left|x-2\right|\ge0\forall x\)(2)

Ta có: -6<0(3)

Từ (1), (2) và (3) suy ra x∈∅

Vậy: x∈∅

14: Ta có:\(-7\left|x+4\right|=21:\left(-3\right)\)

\(\Leftrightarrow-7\left|x+4\right|=-7\)

\(\Leftrightarrow\left|x+4\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=1\\x+4=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-5\end{matrix}\right.\)

Vậy: x∈{-5;-3}

15: Ta có: \(4\left|x+1\right|=8\left(-2\right)-8\left(-5\right)\)

\(\Leftrightarrow4\left|x+1\right|=-16-\left(-40\right)\)

\(\Leftrightarrow4\left|x+1\right|=24\)

\(\Leftrightarrow\left|x+1\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=6\\x+1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-7\end{matrix}\right.\)

Vậy: x∈{-7;5}

16: Ta có: \(3\left|x+5\right|=-9\)(4)

Ta có: |x+5|≥0∀x

⇒3|x+5|≥0∀x(5)

Ta có: -9<0(6)

Từ (4), (5) và (6) suy ra x∈∅

Vậy: x∈∅

17: Ta có: \(-8\left|x-3\right|=24-16:2\)

\(\Leftrightarrow-8\left|x-3\right|=16\)

\(\Leftrightarrow\left|x-3\right|=-2\)

mà |x-3|≥0>-2∀x

nên x∈∅

Vậy: x∈∅

18: Ta có: \(-3\left|x+6\right|=6\cdot2-9\)

\(\Leftrightarrow-3\left|x+6\right|=3\)

\(\Leftrightarrow\left|x+6\right|=-1\)

mà |x+6|≥0>-1∀x

nên x∈∅

Vậy: x∈∅

19: Ta có: \(5-\left|x+7\right|=4\)

\(\Leftrightarrow\left|x+7\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x+7=-1\\x+7=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\x=-6\end{matrix}\right.\)

Vậy: x∈{-8;-6}

20: Ta có: \(12-\left|x+8\right|=10\)

\(\Leftrightarrow\left|x+8\right|=2\)

\(\Leftrightarrow\left[{}\begin{matrix}x+8=2\\x+8=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=-10\end{matrix}\right.\)

Vậy: x∈{-10;-6}

2 tháng 4 2017

Bài 1: Tính

\(\text{1)}\) \(\dfrac{5}{8}.\dfrac{7}{30}-\dfrac{5}{2}.\dfrac{1}{8}\)

\(=\dfrac{5}{8}.\dfrac{7}{30}-\dfrac{5}{8}.\dfrac{1}{2}\)

\(=\dfrac{5}{8}.\left(\dfrac{7}{30}-\dfrac{1}{2}\right)\)

\(=\dfrac{5}{8}.\dfrac{-4}{15}\)

\(=\dfrac{-1}{6}\)

\(\text{2)}\) \(\dfrac{21}{10}.\dfrac{3}{4}-\dfrac{21}{10}-\dfrac{3}{4}\)

\(=\dfrac{63}{40}-\dfrac{21}{10}-\dfrac{3}{4}\)

\(=\dfrac{-21}{40}-\dfrac{3}{4}\)

\(=\dfrac{-51}{40}\)

\(\text{3)}\) \(\dfrac{-4}{11}:\dfrac{-6}{11}\)

\(=\dfrac{-4}{11}.\dfrac{11}{-6}\)

\(=\dfrac{4}{6}\)

\(\text{4)}\) \(\dfrac{2}{7}.\dfrac{14}{3}-1\)

\(=\dfrac{4}{3}-1\)

\(=\dfrac{1}{3}\)

\(\text{5)}\) \(\dfrac{4}{7}:\left(\dfrac{1}{5}.\dfrac{4}{7}\right)\)

\(=\dfrac{4}{7}:\dfrac{1}{5}:\dfrac{4}{7}\)

\(=1:\dfrac{1}{5}\)

\(=5\)

\(\text{6)}\) \(\dfrac{12}{7}.\dfrac{7}{4}+\dfrac{35}{11}:\dfrac{245}{121}\)

\(=3+\dfrac{35}{11}.\dfrac{121}{245}\)

\(=3+\dfrac{11}{7}\)

\(=3\dfrac{11}{7}=\dfrac{32}{7}\)

\(\text{7)}\) \(\left(\dfrac{4}{3}+\dfrac{8}{3}\right).\left(\dfrac{7}{4}-\dfrac{6}{4}\right):\left(\dfrac{6}{5}+\dfrac{12}{5}+\dfrac{1}{5}\right)\)

\(=4.\left(\dfrac{7}{4}-\dfrac{6}{4}\right):\left(\dfrac{6}{5}+\dfrac{12}{5}+\dfrac{1}{5}\right)\)

\(=4.\dfrac{1}{4}:\left(\dfrac{6}{5}+\dfrac{12}{5}+\dfrac{1}{5}\right)\)

\(=4.\dfrac{1}{4}:\dfrac{19}{5}\)

\(=1:\dfrac{19}{5}\)

\(=\dfrac{5}{19}\)

\(\text{8)}\) \(\left(\dfrac{1}{4}-\dfrac{1}{4}+\dfrac{\dfrac{1}{9}}{\dfrac{1}{9}}\right):\left(\dfrac{2}{3}+\dfrac{\dfrac{7}{15}}{\dfrac{2}{5}}-\dfrac{1}{6}\right)\)

\(=\left(0+1\right):\left(\dfrac{2}{3}+\dfrac{7}{15}:\dfrac{2}{5}-\dfrac{1}{6}\right)\)

\(=1:\left(\dfrac{2}{3}+\dfrac{7}{6}-\dfrac{1}{6}\right)\)

\(=1:\left(\dfrac{2}{3}+1\right)\)

\(=1:\dfrac{5}{3}\)

\(=\dfrac{3}{5}\)
\(\text{9)}\)

\(\left[\left(\dfrac{2}{193}-\dfrac{3}{389}\right).\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\left(\dfrac{7}{1931}-\dfrac{11}{3862}\right).\dfrac{1931}{25}+\dfrac{9}{2}\right]\)

\(=\left[\dfrac{199}{75077}.\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\left(\dfrac{7}{1931}-\dfrac{11}{3862}\right).\dfrac{1931}{25}+\dfrac{9}{2}\right]\)

\(=\left[\dfrac{199}{6613}+\dfrac{33}{34}\right]:\left[\left(\dfrac{7}{1931}-\dfrac{11}{3862}\right).\dfrac{1931}{25}+\dfrac{9}{2}\right]\)

\(=\dfrac{13235}{13226}:\left[\left(\dfrac{7}{1931}-\dfrac{11}{3862}\right).\dfrac{1931}{25}+\dfrac{9}{2}\right]\)

\(=\dfrac{13235}{13226}:\left[\dfrac{3}{3862}.\dfrac{1931}{25}+\dfrac{9}{2}\right]\)

\(=\dfrac{13235}{13226}:\left[\dfrac{3}{50}+\dfrac{9}{2}\right]\)

\(=\dfrac{13235}{13226}:\dfrac{114}{25}\)

\(=\dfrac{330875}{1507764}\)