K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2017

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{199.201}\).

\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{199.201}\)

\(2A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{199}-\frac{1}{201}\)

\(2A=\frac{1}{1}-\frac{1}{201}\)

\(2A=\frac{201-1}{201}\)

\(2A=\frac{200}{201}\)

\(A=\frac{200}{201}:2\)

\(A=\frac{200}{402}\)

3 tháng 3 2017

Đáp số là 100/201

3 tháng 3 2022

Mik nghĩ đề phải là cộng chứ

3 tháng 3 2022

Cô ghi là trừ 

17 tháng 6 2019

\(D=\frac{3}{1.3}+\frac{3}{3.5}+...+\frac{3}{199.201}\)

\(D=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{199.201}\right)\)

\(D=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{199}-\frac{1}{201}\right)\)

\(D=\frac{3}{2}\left(1-\frac{1}{201}\right)\)

\(D=\frac{3}{2}.\frac{200}{201}\)

\(D=\frac{100}{67}\)

17 tháng 6 2019

#)Giải :

\(D=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{199.201}\)

\(D=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{199.201}\right)\)

\(D=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{199}-\frac{1}{201}\right)\)

\(D=\frac{3}{2}\left(1-\frac{1}{201}\right)\)

\(D=\frac{3}{2}\times\frac{200}{201}\)

\(D=\frac{100}{67}\)

12 tháng 5 2016

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+.....+\frac{1}{2013.2015}\)

\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{2013.2015}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{2013}-\frac{1}{2015}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{2015}\right)=\frac{1}{2}.\frac{2014}{2015}=\frac{1007}{2015}\)

Vậy A=1007/2015

12 tháng 5 2016

\(2A=2\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2013.2015}\right)\)

\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2015}\)

\(2A=1-\frac{1}{2015}\)

\(A=\frac{2014}{2015}:2\)

\(A=\frac{1007}{2015}\)

12 tháng 5 2016

1/1.3+1/3.5+...+1/2013.2015

=1/2.(1/1-1/3+1/3-1/5+...+1/2013-1/2015)

=1/2.(1/1-1/2015)

=1/2.2014/2015

=1007/2015

12 tháng 5 2016

A=1/1.3+1/3.5+1/5.7+...+1/2013.2015

2A=2.(1/1.3+1/3.5+1/5.7+...+1/2013.2015)

=2/1.3+2/3.5+2/5.7+...+2/2013.2015

=1-1/3+1/5-1/7+1/7-1/9+...+1/2013-1/2015

=1-1/2015

=2014/2015

=>2A=2014/2015=>A=1007/2015

11 tháng 5 2019

A = 1/1.3 + 1/3.5 + 1/5.7 + ... + 1/2011.2013

A = 1/2.(2/1.3 + 2/3.5 + 2/5.7 + ... + 2/2011.2013)

A = 1/2.(1 - 1/3  + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/2011 - 1/2013)

A = 1/2.(1 - 1/2013)

A = 1/2.2012/2013

A = 1006/2013

11 tháng 5 2019

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2011.2013}\)

\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2011.2013}\)

\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2011}-\frac{1}{2013}\)

\(2A=1+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+...+\left(\frac{1}{2011}-\frac{1}{2011}\right)-\frac{1}{2013}\)

\(2A=1-\frac{1}{2013}\)

\(2A=\frac{2012}{2013}\)

\(A=\frac{2012}{2013}:2\)

\(A=\frac{1006}{2013}\)

~ Hok tốt ~

19 tháng 5 2022

chữ xấu (thông cảm) ;-;

undefined

6 tháng 3 2017

a) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}-...-\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}\)

\(=\frac{100}{101}\)

b) \(\frac{7}{1.3}+\frac{7}{3.5}+\frac{7}{5.7}+...+\frac{7}{99.101}\)

\(=7.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{7}{5.7}+...+\frac{7}{99.101}\right)\)

\(=7.\frac{1}{7}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{7}{7}\left(1-\frac{1}{101}\right)\)

\(=\frac{100}{101}\)

6 tháng 3 2017

mình giống như bạn Phạm Hữu Đang

22 tháng 3 2021

S= 1/1.3 + 1/3.5 + 1/5.7 +................+ 1/200.202

=>S=1/2.(2/1.3+2/3.5+2/5.7+...+2/200.202)

=>S=1/2.(3-1/1.3+5-3/3.5+...+202-200/200.202)

=>S=1/2.(1-1/3+1/3-1/5+...+1/200-1/202)

=>S=1/2.(1-1/202)

=>S=1/2.201/202

=>S=201/404

Vậy S=201/404