Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\dfrac{2010^{2011}+1}{2010^{2012}+1}\)
\(A< \dfrac{2010^{2011}+1+2009}{2010^{2012}+1+2009}\)
\(A< \dfrac{2010^{2011}+2010}{2010^{2012}+2010}\)
\(A< \dfrac{2010\left(2010^{2010}+1\right)}{2010\left(2010^{2011}+1\right)}\)
\(A< \dfrac{2010^{2010}+1}{2010^{2011}+1}\)
Mà \(B=\dfrac{2010^{2010}+1}{2010^{2011}+1}\)
\(\Rightarrow A< B\)
\(10A=10.\dfrac{10^{2004}+1}{10^{2005}+1}=\dfrac{10^{2005}+10}{10^{2005}+1}=1+\dfrac{9}{10^{2005}+1}\\ 10B=10.\dfrac{10^{2005}+1}{10^{2006}+1}=\dfrac{10^{2006}+10}{10^{2006}+1}=1+\dfrac{9}{10^{2006}+1}\)
vì \(\dfrac{9}{10^{2005}+1}>\dfrac{9}{10^{2006}+1}\Rightarrow10A>10B\Rightarrow A>B\)
Giải:
Ta có:
A=\(\dfrac{10^{2019}-1}{10^{2020}+1}\)
10A=\(\dfrac{10^{2020}-10}{10^{2020}+1}\)
10A=\(\dfrac{10^{2020}+1-11}{10^{2020}+1}\)
10A=\(1+\dfrac{-11}{10^{2020}+1}\)
Tương tự:
B=\(\dfrac{10^{2020}-1}{20^{2021}+1}\)
10B=\(1+\dfrac{-11}{10^{2021}+1}\)
Vì \(\dfrac{-11}{10^{2020}+1}< \dfrac{-11}{10^{2021}+1}\) nên 10A<10B
⇒A<B
Chúc bạn học tốt!
\(A=1+2+2^2+2^3+...+2^{2021}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2022}\)
\(\Rightarrow A=2A-A=2+2^2+...+2^{2022}-1-2-2^2-...-2^{2021}=2^{2022}-1>2^{2021}-1=N\)
\(a=1+2+2^2+...+2^{2021}\\ \Rightarrow2a=2+2^2+2^3+...+2^{2022}\\ \Rightarrow2a-a=\left(2+2^2+2^3+...+2^{2022}\right)-\left(1+2+2^2+...+2^{2021}\right)\\ \Rightarrow a=2^{2022}-1>2^{2021}-1=n\)
Ta viết lại A như sau:
\(A=\frac{10^{1992}+1}{10^{1991}+1}\)
\(=\frac{10^{1991}X10+1}{10^{1991}+1}\)
\(=\frac{10+1}{1}\)
\(=\frac{11}{1}\)
\(=11\)