Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(3^x=t>0\Rightarrow t^2-2\left(7-x\right)t+45-18x=0\)
\(\Delta'=\left(7-x\right)^2-\left(45-18x\right)=\left(x+2\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=7-x+x+2=9\\t=7-x-\left(x+2\right)=5-2x\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3^x=9\Rightarrow x=2\\3^x=5-2x\left(1\right)\end{matrix}\right.\)
Xét (1) \(\Leftrightarrow3^x+2x-5=0\)
Nhận thấy \(x=1\) là 1 nghiệm của (1)
Xét hàm \(f\left(x\right)=3^x+2x-5\Rightarrow f'\left(x\right)=3^x.ln3+2>0;\forall x\)
\(\Rightarrow f\left(x\right)\) đồng biến trên R nên \(f\left(x\right)\) có tối đa 1 nghiệm
\(\Rightarrow x=1\) là nghiệm duy nhất của (1)
Vậy pt đã cho có 2 nghiệm thực \(x=\left\{1;2\right\}\)
\(1+\log_2\left(9^x-6\right)=\log_2\left(4.3^x-6\right)\)
Điều kiện : \(\begin{cases}9^x>6\\3^x>\frac{3}{2}\end{cases}\) \(\Leftrightarrow x>\log_96\)
\(1+\log_2\left(9^x-6\right)=\log_2\left(4.3^x-6\right)\Leftrightarrow9^x-2.3^x-3=0\)
\(\Leftrightarrow\begin{cases}3^x=-1\\3^x=3\end{cases}\) \(\Leftrightarrow3^x=3\Leftrightarrow x=1\) (thỏa mãn điều kiện)
Kết luận \(x=1\)
Điều kiện xác định : 3\(^x\)>2
Ta có: \(\log_2\left(4.3^x-6\right)=\log_2\left(2\sqrt{2}\right).\log_{2\sqrt{2}}\left(4.3^x-6\right)\)
\(\log_2\left(4.3^x-6\right)-\dfrac{3}{2}\log_{2\sqrt{2}}\left(9^x-6\right)=1\left(1\right)\)\(\Leftrightarrow\log_2\left(2\sqrt{2}\right)\log_{2\sqrt{2}}\left(4.3^x-6\right)-\dfrac{3}{2}\log_{2\sqrt{2}}\left(9^x-6\right)=1\)
\(\Rightarrow\dfrac{3}{2}\log_{2\sqrt{2}}\left(4.3^x-6\right)-\dfrac{3}{2}\log_{2\sqrt{2}}\left(9^x-6\right)=1\)\(\Leftrightarrow\dfrac{3}{2}[\log_{2\sqrt{2}}\left(4.3^x-6\right)-\log_{2\sqrt{2}}\left(9^X-6\right)]=1\)
\(\Leftrightarrow\log_{2\sqrt{2}}\left(\dfrac{4.3^X-6}{9^X-6}\right)=\dfrac{2}{3}\)\(\Leftrightarrow\log_{2\sqrt{2}}\left(\dfrac{4.3^X-6}{9^X-6}\right)=\log_{2\sqrt{2}}\left(2\right)\)
\(\Leftrightarrow\dfrac{4.3^X-6}{9^X-6}=2\Leftrightarrow4.3^X-6=2.9^X-12\)\(\Leftrightarrow2.(3^X)^2-4.3^X-6=0\Rightarrow\left[{}\begin{matrix}3^X=3\left(TM\right)\\3^X=-1\left(loai\right)\end{matrix}\right.\)
\(\Rightarrow x=1.\)Vậy x=1 là nghiệm của phương trình (1)
Bạn coi lại đề câu a, chỗ \(\log_5-x\) đó
b.
\(\Leftrightarrow9^x-3^x-2.3^x-2=0\)
\(\Leftrightarrow3^x\left(3^x-1\right)-2\left(3^x-1\right)=0\)
\(\Leftrightarrow\left(3^x-2\right)\left(3^x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3^x=2\\3^x=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\log_32\\x=0\end{matrix}\right.\)
\(\int\limits^9_0f\left(x\right)dx=F\left(9\right)-F\left(0\right)\)
\(\Rightarrow F\left(9\right)-F\left(0\right)=9\)
\(\Rightarrow F\left(9\right)=9+F\left(0\right)=9+3=12\)
9x - 4.3x -45 = 0
(3x)2 - 4.3x - 45 = 0
đặt 3x = t >0 ta có
t2 -4t - 45 = 0
Δ = (-42) - 4.(-45)
Δ = 16 + 180 = 196
\(\left[{}\begin{matrix}t_1=9\\t_2=-5(loại)\end{matrix}\right.\)
3x = 9 ⇒x = 2