K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2021

x2-2 bn

6 tháng 1 2021

bn có thể giải thích rõ hơn không 

28 tháng 1 2022

a, \(A=2x^3-9x^5+3x^5-3x^2+7x^2-12=-6x^5+2x^3+4x^2-12\)

b, \(B=2x^4+x^2+2x-2x^3-2x^2+x^2-2x+1=2x^4-2x^3+1\)

c, \(C=2x^2+x-x^3-2x^2+x^3-x+3=3\)

26 tháng 10 2021

\(a,=y\left(y-2\right)\\ b,=3x\left(x^2-2x+1\right)=3x\left(x-1\right)^2\\ c,=\left(y-1\right)\left(27x^2+9x^3\right)=9x^2\left(x+3\right)\left(y-1\right)\\ d,=y\left(y^2-2y+1\right)=y\left(y-1\right)^2\\ e,=x\left(x^2+6x+9\right)=x\left(x+3\right)^2\\ f,=x\left(x^2-2xy+y^2\right)=x\left(x-y\right)^2\\ g,=\left(2-x\right)\left(x+1\right)\\ h,=\left(x-1\right)\left(3x-6\right)=3\left(x-1\right)\left(x-2\right)\)

26 tháng 10 2021

a: =y(y-2)

b: \(=3x^2\left(x^2-2x+1\right)=3x^2\left(x-1\right)^2\)

d: \(=y\left(y^2-2y+1\right)=y\left(y-1\right)^2\)

11) Ta có: \(a^6+a^4+a^2b^2+b^4-b^6\)

\(=a^6-b^6+a^4+a^2b^2+b^4\)

\(=\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)+\left(a^4+a^2b^2+b^4\right)\)

\(=\left(a^4+a^2b^2+b^4\right)\left(a^2-b^2+1\right)\)

12) Ta có: \(x^3+3xy+y^3-1\)

\(=\left(x^3+3x^2y+3xy^2+y^3-1\right)-3x^2y-3xy^2+3xy\)

\(=\left[\left(x+y\right)^3-1\right]-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left[x^2+2xy+y^2+x+y+1\right]-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2-xy+y^2+x+y+1\right)\)

14) Ta có: \(x^8+x+1\)

\(=x^8+x^7-x^7-x^6+x^6+x^5-x^5-x^4+x^4+x^3-x^3+x^2-x^2+x+1\)

\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)

15) Ta có: \(x^8+3x^4+4\)

\(=x^8+4x^4+4-x^4\)

\(=\left(x^4+2\right)^2-\left(x^2\right)^2\)

\(=\left(x^4-x^2+2\right)\left(x^4+x^2+2\right)\)

25 tháng 8 2017

Bài tập về phép nhân, phép chia phân thức đại số cực hay, có đáp án | Toán lớp 8