Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(\left(a-b\right)^2-c^2=\left(a-b-c\right)\left(a-b+c\right)\)
c: \(4x^2+12x+9=\left(2x+3\right)^2\)
d: \(25x^2-20xy+4y^2=\left(5x-2y\right)^2\)
e: \(8x^6-27y^3=\left(2x^2-3y\right)\left(4x^2+6x^2y+9y^2\right)\)
\(x^3-12x^2-28x=0\)
\(\Leftrightarrow x\left(x-14\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=14\\x=-2\end{matrix}\right.\)
\(x^4+8x^3+28x^2+48x-13\)
\(=x^4+4x^3+13x^2+4x^3+16x^2+52x-x^2-4x-13\)
\(=x^2\left(x^2+4x+13\right)+4x\left(x^2+4x+13\right)-\left(x^2+4x+13\right)\)
\(=\left(x^2+4x-1\right)\left(x^2+4x+13\right)\)
\(\dfrac{x^2+4x+6}{x+2}+\dfrac{x^2+16x+72}{x+8}=\dfrac{x^2+8x+20}{x+4}+\dfrac{x^2+12x+42}{x+6}\)ĐKXĐ là \(x\ne-2;x\ne-8;x\ne-4;x\ne-6\)
\(\dfrac{x^2+4x+4+2}{x+2}+\dfrac{x^2+16x+64+8}{x+8}=\dfrac{x^2+8x+16+4}{x+4}+\dfrac{x^2+12x+36+6}{x+6}\)\(\Leftrightarrow\dfrac{\left(x+2\right)^2+2}{x+2}+\dfrac{\left(x+8\right)^2+8}{x+8}=\dfrac{\left(x+4\right)^2+4}{x+4}+\dfrac{\left(x+6\right)^2+6}{x+6}\)
\(\Leftrightarrow x+2+\dfrac{2}{x+2}+x+8+\dfrac{8}{x+8}=x+4+\dfrac{4}{x+4}+x+6+\dfrac{6}{x+6}\)
\(\Leftrightarrow\dfrac{2}{x+2}+\dfrac{8}{x+8}=\dfrac{4}{x+4}+\dfrac{6}{x+6}\)
\(\Leftrightarrow\left(\dfrac{2}{x+2}-1\right)+\left(\dfrac{8}{x+8}-1\right)=\left(\dfrac{4}{x+4}-1\right)+\left(\dfrac{6}{x+6}-1\right)\)\(\Leftrightarrow\dfrac{-x}{x+2}+\dfrac{-x}{x+8}=\dfrac{-x}{x+4}+\dfrac{-x}{x+6}\)
\(\Leftrightarrow\dfrac{x}{x+2}+\dfrac{x}{x+8}-\dfrac{x}{x+4}-\dfrac{x}{x+6}=0\)
\(\Leftrightarrow x\left(\dfrac{1}{x+2}+\dfrac{1}{x+8}-\dfrac{1}{x+4}-\dfrac{1}{x+6}\right)=0\)
Do \(\dfrac{1}{x+2}+\dfrac{1}{x+8}-\dfrac{1}{x+4}-\dfrac{1}{x+6}\ne0\)
=> x=0
Vậy ....