K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2017

a)\(x^4-8x^2+x+12=0\)

\(\Leftrightarrow x^4-x^3-3x^2+x^3-x^2-3x-4x^2+4x+12=0\)

\(\Leftrightarrow x^2\left(x^2-x-3\right)+x\left(x^2-x-3\right)-4\left(x^2-x-3\right)=0\)

\(\Leftrightarrow\left(x^2-x-3\right)\left(x^2+x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-x-3=0\\x^2+x-4=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}\Delta\left(1\right)=\left(-1\right)^2-\left(-4\left(1\cdot3\right)\right)=13\\\Delta\left(2\right)=1^2-\left(-4\left(1\cdot4\right)\right)=17\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x_{1,2}=\frac{1\pm\sqrt{13}}{2}\\x_{1,2}=\frac{-1\pm\sqrt{17}}{2}\end{cases}}\)

b)\(x^4+5x^3-10x^2+10x+4=0\)

\(\Leftrightarrow x^4-2x^3+2x^2+7x^3-14x^2+14x+2x^2-4x+4=0\)

\(\Leftrightarrow x^2\left(x^2-2x+2\right)+7x\left(x^2-2x+2\right)+2\left(x^2-2x+2\right)=0\)

\(\Leftrightarrow\left(x^2-2x+2\right)\left(x^2+7x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-2x+2=0\\x^2+7x+2=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}\Delta\left(1\right)=\left(-2\right)^2-4\cdot1\cdot2=-4< 0\left(loai\right)\\\Delta\left(2\right)=7^2-4\cdot1\cdot2=41\end{cases}}\)\(\Rightarrow x_{1,2}=\frac{-7\pm\sqrt{41}}{2}\)

8 tháng 4 2017

Cảm ơn b Thắng Nguyễn

a) Thay m=3 vào hệ pt, ta được:

\(\left\{{}\begin{matrix}x+3y=3\\3x+4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+9y=9\\3x+4y=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5y=3\\x+3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3}{5}\\x=3-3y=3-3\cdot\dfrac{3}{5}=\dfrac{6}{5}\end{matrix}\right.\)

Vậy: Khi m=3 thì hệ phương trình có nghiệm duy nhất là \(\left(x,y\right)=\left(\dfrac{6}{5};\dfrac{3}{5}\right)\)

15 tháng 5 2021

 làm câu b đc ko ạ

a) Thay m=3 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x+3y=3\\3x+4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+9y=9\\3x+4y=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5y=3\\x+3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3}{5}\\x=3-3\cdot\dfrac{3}{5}=\dfrac{15}{5}-\dfrac{9}{5}=\dfrac{6}{5}\end{matrix}\right.\)

Vậy: \(\left(x,y\right)=\left(\dfrac{6}{5};\dfrac{3}{5}\right)\)

Bài 86:

a: Ta có: \(Q=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)

\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

b: Để Q>0 thì \(\sqrt{a}-2>0\)

hay a>4

Hình a: 60 độ

Hình b: 90 độ

Hình c: 180 độ

Hình d: 120 độ