Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Ta chứng minh bất đẳng thức phụ dưới đây: \(\frac{1}{\sqrt{x}\left(x+1\right)}=\frac{\sqrt{x}}{x\left(x+1\right)}=\sqrt{x}\left(\frac{1}{x}-\frac{1}{x+1}\right)=\sqrt{x}\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x+1}}\right)\)\(=\left(1+\frac{\sqrt{x}}{\sqrt{x+1}}\right)\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)< 2\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)\)
Áp dụng : \(\frac{1}{\sqrt{1}.2}< 2.\left(1-\frac{1}{\sqrt{2}}\right)\)
\(\frac{1}{\sqrt{2}.3}< 2.\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)\)
...................................
\(\frac{1}{\sqrt{2015}.2016}< 2.\left(\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\right)\)
Cộng các BĐT trên với nhau được : \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2016\sqrt{2015}}< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\right)=2\left(1-\frac{1}{\sqrt{2016}}\right)< 2\left(1-\frac{1}{\sqrt{2025}}\right)=\frac{88}{45}\)
Từ đó suy ra đpcm
Cái ............... là gì vậy bn
\(2^{x-2}-3.2^x=-88\)
\(\Rightarrow2^x.\frac{1}{4}-3.2^x=-88\)
\(\Rightarrow2^x.\left(\frac{1}{4}-3\right)=-88\)
\(\Rightarrow2^x.\frac{-11}{4}=-88\)
\(\Rightarrow2^x=-88:\frac{-11}{4}\)
\(\Rightarrow2^x=32\)
\(\Rightarrow2^x=2^5\)
\(\Rightarrow x=5\)
Vậy \(x=5\)
2x-2 - 3.2x = -88
2x . 2-2 - 3.2x = -88
2x . (2-2 - 3) = -88
2x . (1/4 - 3) = -88
2x . (-11/4) = -88
2x = -88 : (-11/4)
2x = (-88).(4/-11)
2x = 32
=> x = 5
Ta có:
\(2^{x-2^{ }}-3\cdot2^x=-88\)
\(\Leftrightarrow2^x:2^2-3\cdot2^x=-88\)
\(\Leftrightarrow2^x\cdot\frac{1}{4}-3\cdot2^x=-88\)
\(\Leftrightarrow2^x\left(\frac{1}{4}-3\right)=-88\)
\(\Leftrightarrow2^x\cdot\left(-\frac{11}{4}\right)=-88\)
\(\Leftrightarrow2^x=-88:\left(-\frac{11}{4}\right)\Rightarrow2^x=32=2^5\)
\(\Rightarrow x=5\)
2x-2 - 3.2x = -88
=> 2x-2 - 3.22.2x-2 = -88
=> 2x-2 - 3.4.2x-2 = -88
=> 2x-2 - 12.2x-2 = -88
=> 2x-2.(1 - 12) = -88
=> 2x-2.(-11) = -88
=> 2x-2 = -88 : (-11)
=> 2x-2 = 8 = 23
=> x - 2 = 3
=> x = 3 + 2 = 5
Vậy x = 5
Ta có: \(2^{x-2}-3\cdot2^x=-88\)
\(\Leftrightarrow2^x\cdot\dfrac{1}{4}-3\cdot2^x=-88\)
\(\Leftrightarrow2^x\cdot\dfrac{-11}{4}=-88\)
\(\Leftrightarrow2^x=32\)
hay x=5
\(2^{x-2}-3\cdot2^x=-88\)
\(\Leftrightarrow\frac{2^x}{2^2}-3\cdot2^x=-88\)
\(\Leftrightarrow2^x\left(-\frac{11}{4}\right)=-88\)
\(\Leftrightarrow2^x=32\)
\(\Leftrightarrow x=5\)
\(2^{x-2}-3.2^x=-88\)
\(2^x:2^2-2^x:\frac{1}{3}=-88\)
\(2^x:\left(2^2-\frac{1}{3}\right)=-88\)
\(2^x:\frac{11}{3}=-88\)
\(2^x=-88.\frac{11}{3}\)
\(2^x=\frac{-968}{3}\)
\(2^{x-2}-\)\(3.2^x=-88\)
\(2^x:2^2-2^x.3=-88\)
\(2^x.\frac{1}{4}-\)\(2^x.3=-88\)
\(2^x.\left(\frac{1}{4}-3\right)=-88\)
\(2^x.\frac{-11}{4}=-88\)
\(2^x=-88:\frac{-11}{4}\)
\(2^x=32\)
\(2^x=2^5\)
\(\Rightarrow x=5\)
2: Để \(2x\left(x+1\right)< 0\) thì \(\left\{{}\begin{matrix}x+1\ge0\\x\le0\end{matrix}\right.\Leftrightarrow-1\le x\le0\)
Bạn ơi nếu x ≤ 0 mà x = 0 thì 2x (x+1) = 0
mà 0 = 0 thì sia rồi đúng ko