Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Vì tam giác ABC cân tại A và}\) \(\widehat{BAC}=100^o\) \(\Rightarrow\)\(\widehat{BCA}\)=\(\widehat{CBA}\)=\(\frac{180^o-100^o}{2}\)= 40o
\(\text{Vì O thuộc tia phân giác của}\) \(\widehat{BCA}\)(gt) \(\Rightarrow\)\(\widehat{BCO}\)=\(\widehat{OCA}\)=\(\frac{1}{2}\)\(\widehat{BCA}\)= 20o
\(\text{Vẽ tam giác BCD đều, D nằm trên mặt phẳng bờ BC chứa A }\)
\(\Rightarrow\text{ BC = CD = BD}\)
\(\text{Xét t/g BAD và t/g CAD, ta có:}\)
\(\text{AD là cạnh chung}\)
\(\text{ AB = AC (gt)}\)
\(\text{ BD = DC (gt)}\)
\(\Rightarrow\)\(\widehat{CDA}=\widehat{BDA}\text{ ( 2 góc tương ứng)}\) = \(\frac{1}{2}\)\(\widehat{BDC}\)= 30o
Ta có \(\widehat{BCA}+\widehat{ACD}=\widehat{BCD}\)
40o + \(\widehat{ACD}\) = 60o
\(\widehat{ACD}=20^o\)\(\Rightarrow\)\(\widehat{DBA}=20^o\)
\(\text{Xét t/g BCO và t/g DBA, ta có}\)
\(\text{BC = BD (gt) }\)
\(\widehat{CBO}=\widehat{ADB}=30^o\left(cmt\right)\)
\(\Rightarrow\text{ t/g BCO = t/g DBA (g-c-g)}\)
\(\Rightarrow\text{ CO = AB ( 2 góc tương ứng)}\)
\(\text{mà AB = AC (gt)}\) \(\Rightarrow\)\(\text{CO = AC}\) \(\Rightarrow\)\(\text{t/g AOC cân tại C}\)
\(\widehat{\text{Xét t/g AOC cân tại C có: }OCA}=20^o\text{}\Rightarrow\widehat{COA}=\widehat{OAC}=\frac{180^o-20^o}{2}=80^o\)
cách làm đúng nhưng t/g BCO=t/g DBA thiếu góc OCB=góc DAB= 20 độ
Góc A=100 độ --> gócACB=40 độ --> gócOCB=40/2=20 độ
dựng tam giác đều BCD (D và A cùng phía với BC). Tam giác ADC=BCO vì gócOCB=góc ACD=20độ; CD=BC và góc CBO=CDA=30độ (g.c.g) ---> AC=CO --> tg ACO cân tại C (với góc ACO=20 độ) --> góc CAO= (180-20)/2=80 độ
Góc A=100 độ --> gócACB=40 độ --> gócOCB=40/2=20 độ
dựng tam giác đều BCD (D và A cùng phía với BC). Tam giác ADC=BCO vì gócOCB=góc ACD=20độ; CD=BC và góc CBO=CDA=30độ (g.c.g) ---> AC=CO --> tg ACO cân tại C (với góc ACO=20 độ) --> góc CAO= (180-20)/2=80 độ
Do ΔABC cân tại B => A = C = \(\dfrac{180^o-80^o}{2}=50^o\)
=> góc BAI = 50o - 10o = 40o
góc BCI = 50o - 30o = 20o
=> \(IBC=\dfrac{1}{3}ABI\Rightarrow IBC=\dfrac{80^o}{3+1}=20^o;ABI=80^o-20^o=60^o\)
\(\Leftrightarrow AIB=180^o-40^o-60^o=80^o\)
\(\Delta ABC\)cân tại A, \(\widehat{A}=80^o\)suy ra : \(\widehat{B}=\widehat{C}=50^o\)
Vẽ tam giác BCM đều ( M và A thuộc cùng một nửa mặt phẳng bờ BC )
\(\widehat{MCA}=60^o-50^o=10^o\)
\(\Delta AMB=\Delta AMC\)( c.c.c )
suy ra : \(\widehat{AMB}=\widehat{AMC}=60^o:2=30^o\)
\(\Delta OBC=\Delta AMC\)( g.c.g ) suy ra CO = CA do đó \(\Delta COA\)cân
góc A=100 độ,giả thiết có sẵn là cân tại A và bằng 100 độ mà!
CÓ KHI ĐỀ BÀI SAI ĐÓ!!!
Trên nửa mặt phẳng bờ BC chứa điểm A, dựng tam giác đều BCD, nối D với A.
\(\Delta\)BCD đều \(\Rightarrow\)BC=BD=DC và ^BDC=^DBC=^DCB=600.
\(\Delta\)ABC cân tại A \(\Rightarrow\)AB=AC. Mà ^BAC=800 \(\Rightarrow\)^ABC=^ACB=500.
Xét \(\Delta\)BAD và \(\Delta\)CAD có:
AB=AC
AD chung \(\Rightarrow\)\(\Delta\)BAD=\(\Delta\)CAD (c.c.c)
BD=CD
\(\Rightarrow\)^BDA=^CDA (2 góc tương ứng) \(\Rightarrow\)^BDA=^CDA=^BDC/2=600/2=300.
Mà ^CBO=300 \(\Rightarrow\)^CDA=^CBO=300. Lại có: ^ACD=^DCB-^ACB=600-500=100\(\Rightarrow\)^ACD=^OCB=100.
Xét \(\Delta\)CAD và \(\Delta\)COB có:
^CDA=^CBO
DC=BC \(\Rightarrow\)\(\Delta\)CAD=\(\Delta\)COB (g.c.g) \(\Rightarrow CA=CO\)(2 cạnh tương ứng)
^ACD=^OCB
\(\Delta COA\)cân tại C (đpcm)