K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2018

d,Sửa đề

\(-x^3+6x^2-12x+8\)

\(=-\left(x^3-6x^2+12x-8\right)\)

\(=-\left(x^3-3.x^2.2+3.x.2^2-2^3\right)\)

\(=-\left(x-2\right)^3\)

\(e,27x^3+81x^2+81x+27\)

\(=27\left(x^3+3x^2+3x+1\right)\)

\(=27\left(x+1\right)^3\)

3 tháng 8 2015

bạn đăng ít  thôi dc ko

3 tháng 8 2015

đăng ít thôi thế này ai làm đc

15 tháng 8 2017

1/\(9x^2+6x-575=\left(3x\right)^2+2.3x.1+1-576=\left(3x+1\right)^2-24^2=\left(3x-23\right)\left(3x+25\right)\)

2/\(81x^4+4=81x^4+36x^2+4-36x^2=\left(9x^2+2\right)^2-\left(6x\right)^2\)

\(=\left(9x^2-6x+2\right)\left(9x^2+6x+2\right)\)

3/đặt \(t=x^2+8x+7\) thì đa thức cần phân tích:

t(t+8)+15=t2+8t+15=t2+3t+5t+15=t(t+3)+5(t+3)=(t+3)(t+5)=(x2+8x+10)(x2+8x+12)=(x2+8x+10)(x2+2x+6x+12)

=(x2+8x+10)[x(x+2)+6(x+2)]=(x2+8x+10)(x+2)(x+6)

tạm thế này đã, phải đi ăn cơm rồi :v

15 tháng 8 2017

giúp mình nốt 4,5 nha

19 tháng 7 2015

a) (x2 + 4)2 - 4x(x2 + 4) = 0

(x2 + 4)(x2 + 4 - 4x) = 0

(x2 + 4)(x - 2)2 = 0

\(\Rightarrow\) x2 + 4 = 0 hoặc (x - 2)2 = 0

\(\Rightarrow\) x2 = - 4 hoặc x - 2 = 0

\(\Rightarrow\) x \(\in\) tập hợp rỗng hoặc x = 2

Vậy x = 2

b) x5 - 18x3 + 81x = 0

x(x4 - 18x2 + 81) = 0

x(x2 - 9) = 0

x(x - 3)(x + 3) = 0

\(\Rightarrow\) x = 0 hoặc x - 3 = 0 hoặc x + 3 = 0

\(\Rightarrow\) x = 0 hoặc x = 3 hoặc x = - 3

Vậy \(x\in\left\{0;3;-3\right\}\)

10 tháng 6 2015

1. \(x^2-x+\frac{1}{4}-\frac{485}{4}=\left(x-\frac{1}{2}\right)^2-\frac{485}{4}=\left(x-\frac{1}{2}-\frac{\sqrt{485}}{2}\right)\left(x-\frac{1}{2}+\frac{\sqrt{485}}{2}\right)=\left(x-\frac{1+\sqrt{485}}{2}\right)\left(x+\frac{\sqrt{485}-1}{2}\right)\)

2) \(81x^2+4=4\left(\frac{81}{4}x^2+1\right)\)

3) \(A=x^2-4x+1=x^2-4x+4-3=\left(x-2\right)^2-3\ge-3\)=> Min A =-3 <=> x=2

. Nhớ L I K E

1.

\(a,x^2-x-121\)\(=\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)-\frac{485}{4}\)\(=\left(x-\frac{1}{2}\right)^2-\frac{485}{4}\)\(=\left(x-\frac{1}{2}-\frac{\sqrt{485}}{2}\right)\left(x-\frac{1}{2}+\frac{\sqrt{485}}{2}\right)\)

\(b,81x^2+4\)\(=\left(9x^2\right)^2+2^2=\left[\left(9x^2\right)^2+36x^2+2^2\right]-36x^2\)

\(=\left(9x^2+2\right)^2-\left(6x\right)^2\)\(=\left(9x^2+2-6x\right)\left(9x^2+2+6x\right)\)

2.

\(A=x^2-4x+1=\left(x^2-2.x.2+4\right)-3\)\(=\left(x-2\right)^2-3\)

Vì \(\left(x-2\right)^2\ge0\)\(\Rightarrow\left(x-2\right)^2-3\ge-3\)

Dấu ''='' xảy ra khi x-2=0    => x=2

Vậy GTNN của A là A=-3 khi x=2

27 tháng 7 2015

Nhiều qua trời 

a) Ta có: \(x^4+64\)

\(=x^4+16x^2+64-16x^2\)

\(=\left(x^2+8\right)^2-\left(4x\right)^2\)

\(=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)

b) Ta có: \(81x^4+4y^4\)

\(=81x^4+36x^2y^2+4y^4-36x^2y^2\)

\(=\left(9x^2+2y^2\right)^2-\left(6xy\right)^2\)

\(=\left(9x^2-6xy+2y^2\right)\left(9x^2+6xy+2y^2\right)\)

c) Ta có: \(x^5+x+1\)

\(=x^5+x^2-x^2+x-1\)

\(=x^2\left(x^3+1\right)-\left(x^2-x+1\right)\)

\(=x^2\left(x+1\right)\left(x^2-x+1\right)-\left(x^2-x+1\right)\)

\(=\left(x^2-x+1\right)\left(x^3+x^2-1\right)\)