Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ở VP "+4" nằm ở ngoài căn,đau bụng nên viết vội còn chạy ra WC :P
a/ ĐKXĐ: \(0\le x\le4\)
\(\left(x^2-4x\right)\sqrt{-x^2+4x}+x^2-4x+2=0\)
Đặt \(\sqrt{-x^2+4x}=a\ge0\)
\(-a^2.a-a^2+2=0\)
\(\Leftrightarrow a^3+a^2-2=0\)
\(\Leftrightarrow\left(a-1\right)\left(a^2+2a+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a^2+2a+2=0\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{-x^2+4x}=1\Leftrightarrow x^2-4x+1=0\Rightarrow...\)
b/ \(x^4+2x^2+x\sqrt{2x^2+4}-4=0\)
Đặt \(x\sqrt{2x^2+4}=a\Rightarrow x^2\left(2x^2+4\right)=a^2\Rightarrow x^4+2x^2=\frac{a^2}{2}\)
\(\frac{a^2}{2}+a-4=0\Leftrightarrow a^2+2a-8=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x\sqrt{2x^2+4}=2\left(x>0\right)\\x\sqrt{2x^2+4}=-4\left(x< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^4+4x^2=4\\2x^4+4x^2=16\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2=\sqrt{3}-1\\x^2=-\sqrt{3}-1\left(l\right)\\x^2=2\\x^2=-4\left(l\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\sqrt{\sqrt{3}-1}\\x=-\sqrt{2}\end{matrix}\right.\)
c/ Đặt \(\sqrt[3]{2x^2+3x-10}=a\Rightarrow2x^2+3x=a^3+10\)
\(a^3+10-14=2a\)
\(\Leftrightarrow a^3-2a-4=0\)
\(\Leftrightarrow\left(a-2\right)\left(a^2+2a+2\right)=0\Rightarrow a=2\)
\(\Rightarrow\sqrt[3]{2x^2+3x-10}=2\Rightarrow2x^2+3x-18=0\Rightarrow...\)
d/ \(\Leftrightarrow2\left(3x^2+x+4\right)+\sqrt[3]{3x^2+x+4}-18=0\)
Đặt \(\sqrt[3]{3x^2+x+4}=a\)
\(2a^3+a-18=0\)
\(\Leftrightarrow\left(a-2\right)\left(2a^2+4a+9\right)=0\Rightarrow a=2\)
\(\Rightarrow\sqrt[3]{3x^2+x+4}=2\Rightarrow3x^2+x-4=0\Rightarrow...\)
e/ \(\Leftrightarrow x^2+5x+2-3\sqrt{x^2+5x+2}-2=0\)
Đặt \(\sqrt{x^2+5x+2}=a\ge0\)
\(a^2-3a-2=0\Rightarrow\left[{}\begin{matrix}a=\frac{3+\sqrt{17}}{2}\\a=\frac{3-\sqrt{17}}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2+5x+2}=\frac{3+\sqrt{17}}{2}\Rightarrow x^2+5x-\frac{9+3\sqrt{17}}{2}=0\)
Bài cuối xấu quá, chắc nhầm số liệu
b: Đặt \(x^2+5x+4=a\)
\(\Leftrightarrow a=5\sqrt{a+24}\)
\(\Leftrightarrow a^2=25a+600\)
\(\Leftrightarrow a^2-25a-600=0\)
\(\Leftrightarrow\left(a-40\right)\left(a+15\right)=0\)
\(\Leftrightarrow a=-15\)
hay S=∅
a/ ĐKXĐ: ...
\(\Leftrightarrow\left(x^2-6x\right)\left(\sqrt{17-x^2}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x=0\\\sqrt{17-x^2}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\left(x-6\right)=0\\x^2=16\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\left(l\right)\\x=4\\x=-4\end{matrix}\right.\)
b/ĐKXĐ: \(x\ge-3\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+5x+4=0\\\sqrt{x+3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-4\left(l\right)\\x=-3\end{matrix}\right.\)
c/ ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ge1\\x\le1\end{matrix}\right.\) \(\Rightarrow x=1\)
Thay \(x=1\) vào pt thấy ko thỏa mãn
Vậy pt vô nghiệm
d/ ĐKXĐ: \(x\ge2\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x+3=0\\\sqrt{x-2}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\left(l\right)\\x=2\end{matrix}\right.\)
28. \(x^2+\frac{9x^2}{\left(x-3\right)^2}=40\) DK: \(x\ne3\)
PT\(\Leftrightarrow\left(x+\frac{3x}{x-3}\right)^2-6\frac{x^2}{x-3}-40=0\)\(\Leftrightarrow\frac{x^4}{\left(x-3\right)^2}-6\frac{x^2}{x-3}-40=0\)
Dat \(\frac{x^2}{x-3}=a\). PTTT \(a^2-6a-40=0\)\(\Leftrightarrow\left(a-10\right)\left(a+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=10\\a=-4\end{matrix}\right.\)
giai tiep
14. \(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x}-1}=1\) DK: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
PT\(\Leftrightarrow\frac{\sqrt{x}-1+\sqrt{x}+1}{x-1}=1\Leftrightarrow2\sqrt{x}=x-1\)\(\Leftrightarrow x-2\sqrt{x}+1=2\Leftrightarrow\left(\sqrt{x}-1\right)^2=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3+2\sqrt{2}\\x=3-2\sqrt{2}\end{matrix}\right.\)
a) ĐK: \(\orbr{\begin{cases}x\ge3+\sqrt{3}\\x\le3-\sqrt{3}\end{cases}}\)
pt \(\Leftrightarrow\)\(x^2-6x+9-4\sqrt{x^2-6x+6}=0\)
\(\Leftrightarrow\)\(a^2-4a+3=0\)\(\left(a=\sqrt{x^2-6x+6}\ge0\right)\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x^2-6x+6}=1\\\sqrt{x^2-6x+6}=3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1hoacx=5\\x=3\pm2\sqrt{3}\end{cases}}\left(nhan\right)\)
b) ĐK..
pt \(\Leftrightarrow\)\(\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+2\left|\frac{x-2}{x-1}\right|-3=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\left|\frac{x-2}{x-1}\right|=-3\left(loai\right)\\\left|\frac{x-2}{x-1}\right|=1\end{cases}}\Leftrightarrow x=\frac{3}{2}\left(nhan\right)\)