Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhg đây là giải pt ạ. Nếu đã là giải phương trình ko đc nhân chéo đâu ạ
\(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne30\\x\ne24\end{cases}}\)
Ta có \(\frac{60}{\frac{120}{x}-4}+\frac{60}{\frac{120}{x}-5}=x\)
\(\Leftrightarrow\frac{60}{\frac{120-4x}{x}}+\frac{60}{\frac{120-5x}{x}}=x\)
\(\Leftrightarrow\frac{60x}{120-4x}+\frac{60x}{120-5x}=x\)
\(\Leftrightarrow\frac{60}{120-4x}+\frac{60}{120-5x}=1\left(Do\text{ }x\ne0\right)\)
\(\Leftrightarrow\frac{15}{30-x}=1-\frac{12}{24-x}\)
\(\Leftrightarrow\frac{15}{30-x}=\frac{24-x-12}{24-x}\)
\(\Leftrightarrow\frac{15}{30-x}=\frac{12-x}{24-x}\)
\(\Leftrightarrow360-15x=\left(12-x\right)\left(30-x\right)\)
\(\Leftrightarrow360-15x=360-42x+x^2\)
\(\Leftrightarrow x^2-27x=0\)
\(\Leftrightarrow x\left(x-27\right)=0\)
\(\Leftrightarrow x=27\left(Tm\text{ }ĐKXĐ\right)\)
Vẽ hình, gọi A1 là góc trong còn A2 là góc ngoài tại A
Ta có: \(\widehat{A_1}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\) (Tổng 4 góc của tứ giác)
\(\Rightarrow\widehat{A}_1+120^0+60^0+90^0=360^0\)
\(\Rightarrow\widehat{A_1}=360^0-120^0-60^0-90^0=90^0\)
Ta có: \(\widehat{A_1}+\widehat{A_2}=180^0\) (kề bù)
\(\Rightarrow90^0+\widehat{A_2}=180^0\Rightarrow\widehat{A_2}=90^0\)
Vậy ....
trong tứ giác ABCD có: góc A+ góc B+ góc C+ góc D=360 độ
thay số: góc A+ 120 độ + 60 độ+ 90 độ= 360 độ
suy ra: góc A= 360 độ -120 độ -60 độ- 90 độ=90 độ
góc ngoài tại A= 180 độ - góc A
thay số: góc ngoài tại A=180 độ-90 độ=90 độ
Vậy góc A=90 độ, góc ngoài của A=90 độ
\(a,\Rightarrow2x^2-18x-2x^2=0\\ \Rightarrow-18x=0\Rightarrow x=0\\ b,\Rightarrow2x^2-5x-12+x^2-7x+10=3x^2-17x+20\\ \Rightarrow5x=22\Rightarrow x=\dfrac{22}{5}\)
a/ (x + 3)4 + (x + 5)4 = 16
=> (x2 + 6x + 9)2 + (x2 + 10x + 25)2 = 16
=> x4 + 36x2 + 81 + 12x3 + 108x + 18x2 + x4 + 100x2 + 625 + 20x3 + 500x + 50x2 = 16
=> 2x4 + 32x3 + 204x2 + 608x + 690 = 0
=> 2(x + 3)(x + 5)(x2 + 8x + 23) = 0
=> (x + 3)(x + 5)(x2 + 8x + 23) = 0
=> x = -3
hoặc x = -5
hoặc x2 + 8x + 23 = 0 , mà x2 + 8x + 23 > 0 => pt vô nghiệm
Vậy x = -3 , x = -5
a,
\(\Leftrightarrow\left(\left(2x^2-4\right)-2\left(x+1\right)^2\right)< 0\)
\(\Leftrightarrow2x^2-4-2\left(x^2+2x+1\right)< 0\)
\(\Leftrightarrow2x^2-4-2x^2-4x-2< 0\)
\(\Leftrightarrow-4x-6< 0\)
\(\Rightarrow x+\dfrac{3}{2}>0\)
\(\Rightarrow x>-\dfrac{3}{2}\)
\(x\in\left\{-\dfrac{3}{2};\infty\right\}\)
b/
\(\Leftrightarrow\left(x-3\right)^2-5+6x< 0\)
\(\Leftrightarrow x^2-6x+9-5+6x< 0\)
\(\Leftrightarrow x^2+4< 0\) ( điều này vô lý vì không có giá trị nào của x khiến x^2+4<0)
từ trên suy ra:
không có giá trị nào của x để pt này đúng .
\(\frac{60}{x+5}+\frac{60}{x-4}=\frac{120}{x}\Rightarrow\frac{1}{x+5}+\frac{1}{x-4}=\frac{2}{x}\)
\(\Rightarrow\frac{x\left(x-4\right)+x\left(x+5\right)-2\left(x+5\right)\left(x-4\right)}{x\left(x+5\right)\left(x-4\right)}=0\)
\(\Rightarrow\frac{x^2-4x+x^2+5x-2x^2-2x+40}{x\left(x+5\right)\left(x-4\right)}=0\)
\(\frac{-x+40}{x\left(x+5\right)\left(x-4\right)}=0\)
mà x(x+5)(x-4) khác 0 nên
-x+40=0
nên x=40