Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(7-2\sqrt{6}=\left(\sqrt{6}\right)^2-2\sqrt{6}+1\)
\(=\left(\sqrt{6}-1\right)^2\)
2/ \(10+2\sqrt{21}=\left(\sqrt{7}\right)^2+2.\sqrt{7}.\sqrt{3}+\left(\sqrt{3}\right)^2\)
\(=\left(\sqrt{7}+\sqrt{3}\right)^2\)
4/ \(10+4\sqrt{6}=2^2+2.2.\sqrt{6}+\left(\sqrt{6}\right)^2\)
\(=\left(2+\sqrt{6}\right)^2\)
5/ \(11-2\sqrt{30}=\left(\sqrt{6}\right)^2-2.\sqrt{6}.\sqrt{5}+\left(\sqrt{5}\right)^2\)
= \(\left(\sqrt{6}-\sqrt{5}\right)^2\)
8/ \(11+4\sqrt{7}=2^2+2.2.\sqrt{7}+\left(\sqrt{7}\right)^2\)
= \(\left(2+\sqrt{7}\right)^2\)
10/ \(12+6\sqrt{3}=3^2+2.3.\sqrt{3}+\left(\sqrt{3}\right)^2\)
= \(\left(3+\sqrt{3}\right)^2\)
1) \(=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)
2) \(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}=\sqrt{3}+\sqrt{2}\)
3) \(=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}=\sqrt{5}-\sqrt{2}\)
5) \(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}+\sqrt{3}\)
6) \(=\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}=\sqrt{7}-\sqrt{3}\)
7) \(=\sqrt{\left(3+\sqrt{2}\right)^2}=3+\sqrt{2}\)
\(a,=\left(\sqrt{6}+\sqrt{5}\right)^2\\ b,=\left(\sqrt{7}-\sqrt{3}\right)^2\\ c,=\left(\sqrt{3}+\sqrt{5}\right)^2\\ d,=\left(2+\sqrt{3}\right)^2\\ e,=\left(2\sqrt{2}-1\right)^2\)
a: \(=\left(\sqrt{6}+\sqrt{5}\right)^2\)
b: \(=\left(\sqrt{7}-\sqrt{3}\right)^2\)
14) \(\sqrt{7-4\sqrt{3}}=2-\sqrt{3}\)
15) \(\sqrt{8+2\sqrt{15}}=\sqrt{5}+\sqrt{3}\)
16) \(\sqrt{10-2\sqrt{21}}=\sqrt{7}-\sqrt{3}\)
17) \(\sqrt{11+2\sqrt{18}}=3+\sqrt{2}\)
18) \(\sqrt{7+2\sqrt{10}}=\sqrt{5}+\sqrt{2}\)
19) \(\sqrt{7+4\sqrt{3}}=2+\sqrt{3}\)
20) \(\sqrt{12-2\sqrt{35}}=\sqrt{7}-\sqrt{5}\)
A = ((20 + 1) . 20 : 2) . 2 = 420
B = (25 + 20) . 6 : 2 = 135
C = ( 33 + 26) . 8 : 2 = 236
D = (1 + 100) .100 : 2 = 5050
a) Ta có: \(\sqrt{3-2\sqrt{2}}-\sqrt{11+6\sqrt{2}}\)
\(=\sqrt{2}-1-3-\sqrt{2}\)
=-4
b) Ta có: \(\sqrt{4-2\sqrt{3}}-\sqrt{7-4\sqrt{3}}+\sqrt{19+8\sqrt{3}}\)
\(=\sqrt{3}-1-2+\sqrt{3}+4+\sqrt{3}\)
\(=3\sqrt{3}+1\)
c) Ta có: \(\sqrt{6-2\sqrt{5}}+\sqrt{9+4\sqrt{5}}-\sqrt{14-6\sqrt{5}}\)
\(=\sqrt{5}-1+\sqrt{5}-2-3+\sqrt{5}\)
\(=3\sqrt{5}-6\)
d) Ta có: \(\sqrt{11-4\sqrt{7}}+\sqrt{23-8\sqrt{7}}+\sqrt{\left(-2\right)^6}\)
\(=\sqrt{7}-2+4-\sqrt{7}+8\)
=10
`sqrt{5+2sqrt6}`
`=sqrt{3+2sqrt3sqrt2+2}`
`=sqrt{(sqrt3+sqrt2)^2}`
`=|sqrt3+sqrt2|=sqrt3+sqrt2`
`7. sqrt(4+2sqrt3)`
`=sqrt{3+2sqrt3+1}`
`=sqrt{(sqrt3+1)^2}`
`=sqrt3+1`
`8. sqrt(4-2sqrt3)`
`=sqrt{3-2sqrt3+1}`
`=sqrt{(sqrt3-1)^2}`
`=sqrt3-1`
`9. sqrt(11-2sqrt(30))`
`=sqrt{6-2sqrt5sqrt6+5}`
`=sqrt{(sqrt6-sqrt5)^2}`
`=sqrt6-sqrt5`
`10. sqrt(21-4sqrt(17))`
`=sqrt{17-2.2.sqrt{17}+4}`
`=sqrt{(sqrt{17}-2)^2}`
`=sqrt{17}-2`