Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có:
\(\frac{1}{2^3}< \frac{1}{1\cdot2\cdot3};\frac{1}{3^3}< \frac{1}{2\cdot3\cdot4};\frac{1}{4^3}< \frac{1}{3\cdot4\cdot5};...;\frac{1}{n^3}< \frac{1}{\left[n-1\right]n\left[n+1\right]}\)
\(\Rightarrow\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{3^3}+...+\frac{1}{n^3}< \frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{\left[n-1\right]n\left[n+1\right]}\)
Đặt \(A'=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{\left[n-1\right]n\left[n+1\right]}\)
\(\Rightarrow\frac{1}{2}A'=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{\left[n-1\right].n}-\frac{1}{n\left[n+1\right]}\)
\(\frac{1}{2}A'=\frac{1}{1\cdot2}-\frac{1}{n\left[n+1\right]}=\frac{1}{2}-\frac{1}{n\left[n+1\right]}=\frac{1}{4}-\frac{1}{2n\left[n+1\right]}< \frac{1}{4}\)
Vậy \(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{\left[n-1\right]n\left[n+1\right]}< \frac{1}{4}\Leftrightarrow\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{n^3}< \frac{1}{4}\)
b,
\(C=\frac{4}{3}+\frac{10}{9}+\frac{28}{27}+...+\frac{3^{98}+1}{3^{98}}=1+\frac{1}{3}+1+\frac{1}{3^2}+1+\frac{1}{3^3}+...+1+\frac{1}{3^{98}}\)
\(=\left[1+1+1+...+1\right]+\left[\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right]=98+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\)
Đặt \(C'=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\)
\(\Rightarrow3C'=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{97}}\)
\(\Rightarrow3C'-C'=\left[1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{97}}\right]-\left[\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right]=1-\frac{1}{3^{98}}\)
\(\Rightarrow C'=\frac{1-\frac{1}{3^{98}}}{2}< 1\)
\(\Rightarrow98+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}< 98+1=99< 100\)
\(\Rightarrow\frac{4}{3}+\frac{10}{9}+\frac{28}{27}+...+\frac{3^{98}+1}{3^{98}}< 100\)
c,
\(D=\frac{5}{4}+\frac{5}{4^2}+...+\frac{5}{4^{39}}\)
\(4D=5+\frac{5}{4}+\frac{5}{4^2}+...+\frac{5}{4^{38}}\)
\(4D-D=\left[5+\frac{5}{4}+\frac{5}{4^2}+...+\frac{5}{4^{38}}\right]-\left[\frac{5}{4}+\frac{5}{4^2}+...+\frac{5}{4^{38}}+\frac{5}{4^{39}}\right]\)
\(3D=5-\frac{5}{4^{39}}\Leftrightarrow D=\frac{5-\frac{5}{4^{39}}}{3}< \frac{5}{3}\)
Vậy:...........
AI THẤY ĐÚNG NHỚ ỦNG HỘ NHA
=\(\frac{3\left(\frac{1}{1}-\frac{1}{11}+\frac{1}{13}\right)}{5\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{\frac{2}{4}+\frac{2}{6}+\frac{2}{8}}{5\left(\frac{1}{4}+\frac{1}{6}+\frac{1}{8}\right)}\)
=\(\frac{3}{5}+\frac{2\left(\frac{1}{4}+\frac{1}{6}+\frac{1}{8}\right)}{5\left(\frac{1}{4}+\frac{1}{6}+\frac{1}{8}\right)}\)=\(\frac{3}{5}+\frac{2}{5}=\frac{5}{5}=1\)
Đặt P = ... ( biểu thức đề bài )
Nhận xét: Với \(k\inℕ^∗\) ta có:
\(\frac{k+2}{k!+\left(k+1\right)!+\left(k+2\right)!}=\frac{k+2}{k!+\left(k+1\right).k!+\left(k+2\right).k!}=\frac{k+2}{2.k!\left(k+2\right)}=\frac{1}{2.k!}\)
\(\Rightarrow\)\(P=\frac{1}{2.1!}+\frac{1}{2.2!}+...+\frac{1}{2.6!}=\frac{1}{2}\left(1+\frac{1}{2}+...+\frac{1}{720}\right)=...\)
Ta có : \(\frac{\frac{3}{5}+\frac{3}{7}-\frac{1}{3}+\frac{3}{11}}{\frac{6}{5}+\frac{6}{7}-\frac{2}{3}+\frac{6}{11}}=\frac{\frac{3}{5}+\frac{3}{7}-\frac{1}{3}+\frac{3}{11}}{2\left(\frac{3}{5}+\frac{3}{7}-\frac{1}{3}+\frac{3}{11}\right)}=\frac{1}{2}\)
Lại có : \(\frac{\left(\frac{1}{4}-\frac{1}{5}-\frac{1}{20}\right).2021}{\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}}=\frac{0.2021}{\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}}=0\)
Khi đó \(B=\frac{1}{2}+0=\frac{1}{2}\)
\(\frac{1}{2}=\frac{3}{-6}\)vì \(1.-6=3.2\)
Các câu sau tương tự vậy ấy
Tk mk nha
\(\left(6-2\frac{4}{5}\right).3\frac{1}{8}-1\frac{3}{5}:\frac{1}{4}\)
\(=\left(6-\frac{14}{5}\right).\frac{25}{8}-\frac{8}{5}:\frac{1}{4}\)
\(=\frac{16}{5}.\frac{25}{8}-\frac{32}{5}\)
\(=10-\frac{32}{5}\)
\(=\frac{18}{5}\)