K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2023

Lần sau bạn viết latex giúp mình nha, ghi vậy mình không biết biểu thức A cái nào trước sau.

2 tháng 4 2023

Sao không lần này luôn vậy =)))

2 tháng 4 2023

\(2x^2-6x-1=0\)

Theo Vi - ét, ta có :

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{6}{2}=3\\x_1x_2=\dfrac{c}{a}=-\dfrac{1}{2}\end{matrix}\right.\)

Ta có :

\(A=\dfrac{x_1-2}{x_2-1}+\dfrac{x_2-2}{x_1-1}\)

\(=\dfrac{\left(x_1-2\right)\left(x_1-1\right)+\left(x_2-2\right)\left(x_2-1\right)}{\left(x_2-1\right)\left(x_1-1\right)}\)

\(=\dfrac{x_1^2-x_1-2x_1+2+x_2^2-x_2-2x_2+2}{x_1x_2-\left(x_1+x_2\right)+1}\)

\(=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2-3\left(x_1+x_2\right)+4}{x_1x_2-\left(x_1+x_2\right)+1}\)

\(=\dfrac{3^2-2.\left(-\dfrac{1}{2}\right)-3.3+4}{-\dfrac{1}{2}-3+1}\)

\(=-2\)

2 tháng 4 2023

\(x\left(3x-4\right)=2x^2+1\)

\(\Leftrightarrow3x^2-4x-2x^2-1=0\)

\(\Leftrightarrow x^2-4x-1=0\)

Theo Vi - ét, ta có :

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=4\\x_1x_2=\dfrac{c}{a}=-1\end{matrix}\right.\)

Ta có :

\(A=x_1^2+x_2^2+3x_1x_2\)

\(=\left(x_1+x_2\right)^2-2x_1x_2+3x_1x_2\)

\(=\left(x_1+x_2\right)^2+x_1x_2\)

\(=4^2-1\)

\(=16-1\)

\(=15\)

2 tháng 4 2023

  

\(=x_1^2+x_2^2-2x_1x_2-x_1^2+\dfrac{1}{2}x_1\)

\(=x_2^2-2x_1x_2+\dfrac{1}{2}x_1\)

26 tháng 5 2021

2x2-5x + 2m - 1 = 0  ( 1)

Dental = (-5)2 - 4*2*( 2m - 1)

           = 25 - 16m + 8

           = 33 - 16m

Phương trình (1) có 2 nghiệm phân biệt khi :

  33 - 16m > 0

 - 16m >-33

    m < 33/16

Theo hệ thức vi-ét ta có:

x1 + x2 = -b/a = 5/2

x1x2 = c/a =2m - 1/2

Theo bài ch0 :1/x1 + 1/x2 = 5/2

<=>2( x2 + x1   ) = 5x1x

<+> 2( 5/2 )  + 55 ( 2m - 1 ?

<+> 5 =  10m -5?2

 

<+> 

 

 

 

    

26 tháng 5 2021

<=>2( x2 + x1   ) = 5x1x

<=> 2( 5/2 )  = 5 ( 2m - 1 /)

<=> 5 - 10m + 5/2 = 0

<=> 10 - 20m + 5 = 0

<=> 15 - 20m = 0

<=> -20m = -15

<=> m = 5/4

Vậy m = 5/4  thỏa mãn yêu cầu bài toán 

( mình học khá nên chắc không đúng 100 %, có sai xót thì mng sửa hộ ạ ^^ )

 

 

 

Bài 1: Không giải Pt xét xem mỗi PT sau có bao nhiêu nghiệm a) x2 – 2x – 5= 0 ( Có 2 nghiệm phân biệt ) b) x2 + 4x + 4= 0 ( PT có nghiệm kép ) c) x2 – x + 4 = 0 (PT vô nghiệm ) d) x2 – 5x + 2=0 ( PT có 2 nghiệm phân biệt ) *) Nhận xét : - Với a và c trái dấu thì PT luôn có 2 nghiệm phân biệt - Với a và c cùng dấu thì không xác định đƣợc số nghiệm của PT mà phải nhờ dấu của đen ta D1ng 2: Dïng c«ng thøc nghiÖm ®Ó gi¶I PT bËc 2 Bμi 1: Gi¶I c...
Đọc tiếp

Bài 1: Không giải Pt xét xem mỗi PT sau có bao nhiêu nghiệm
a) x2
– 2x – 5= 0 ( Có 2 nghiệm phân biệt )
b) x2
+ 4x + 4= 0 ( PT có nghiệm kép )
c) x2
– x + 4 = 0 (PT vô nghiệm )
d) x2
– 5x + 2=0 ( PT có 2 nghiệm phân biệt )
*) Nhận xét :
- Với a và c trái dấu thì PT luôn có 2 nghiệm phân biệt
- Với a và c cùng dấu thì không xác định đƣợc số nghiệm của PT mà phải nhờ dấu của đen ta
D1ng 2: Dïng c«ng thøc nghiÖm ®Ó gi¶I PT bËc 2
Bμi 1: Gi¶I c ̧c PT sau :
a) x2
– 11x + 38 = 0 b) 5x2

– 6x + 27 = 0

c) x2
– (
2  8
)x+ 4 = 0 d)

1 0

4
1 2
x  x  

Bμi 2: Gi¶i PT sau :

 
0
2
1
2
3
1
)(1 2) 2(1 2) 1 3 2 0;............................ )
)( 3 1) 2 3 3 1 0;....................................... ) 1 3 (2 3 1) 3 1 0
2 2
2 2
        
          
c x x d x x
a x x b x x

*) Nhận xét :
Cần đƣa các hệ số của PT bậc hai về dạng đơn giản nhất để áp dụng công thức nghiệm
D1ng 3: T×m §K cña tham sè ®Ó PT cã nghiÖm , v« nghiÖm , cã nghiÖm kÐp :
Bài 1: Cho phƣơng trình : x2

– 4x + 3m – 1= 0 (1) (

’= 5- 3m )

a) Tìm m để PT (1) có 2 nghiệm phân biệt
b) Tìm m để PT(1) có nghiệm
Bài 2: Cho PT: x2

– 2m x + 4 =0 (2) (

’= m
2
- 8 )

a) Tìm m để PT(2) có nghiệm
b) Tìm m để PT(2) vô nghiệm
D1ng 4: Chøng minh PT lu«n cã nghiÖm , v« nghiÖm :
Bài 1: CMR: PT sau luôn có nghiệm với mọi giá trị của m

a) x
2
–( m – 1)x2
– 5 = 0

b) x
2
– 2(m +2)x - 4m - 10 = 0
Bμi 2: Cho PT : mx2 – (2m + 1) x+ (m + 1) = 0 ( 1)
a) CMR : PT (1) lu«n cã nghiÖm víi mäi gi ̧ trÞ cña m
b) T×m gi ̧ trÞ cña m ®Ó PT ( 1) cã nghiÖm > 2

2

D1ng 5: Sù t-¬ng giao cña ®-êng th1⁄4ng vμ ®-êng cong :
Bμi 1: Cho ®-êng th1⁄4ng (d) y = 2x – 5 vμ (P) y = 3x2
T×m täa ®é giao ®iÓm cña (d) vμ (P)
Bμi 2: Cho (d) y = 2(m +1) x – 1 vμ (P) y = x
2
. T×m m ®Ó

a) (d) c3⁄4t (P) t1i 2 ®iÓm ph©n biÖt
b) ( d) tiÕp xóc víi ( P)
c) ( d) không cắt (P)
Bài 3: ( Thi vào 10 năm học 2015-2016)
Cho hàm số y = x2

( P) và y = ( 5m-1)x – 6m2 + 2m ( d)
a) Tìm m để (d) cắt (P) tại 2 điểm phân biệt
b) Gọi x1 và x2

là hoành độ giao điểm của P và (d) . Tìm m để x1
2 +x2
2 = 1

1
21 tháng 4 2020

vl, mày hỏi thế thì ai chả lời được Mai

20 tháng 12 2017

a)  2 x 2   –   17 x   +   1   =   0

Có a = 2; b = -17; c = 1

Δ   =   b 2   –   4 a c   =   ( - 17 ) 2   –   4 . 2 . 1   =   281   >   0 .

Theo hệ thức Vi-et: phương trình có hai nghiệm x1; x2 thỏa mãn:

x 1 + x 2 = − b / a = 17 / 2 x 1 x 2 = c / a = 1 / 2

b)  5 x 2   –   x   –   35   =   0

Có a = 5 ; b = -1 ; c = -35 ;

Δ   =   b 2   –   4 a c   =   ( - 1 ) 2   –   4 . 5 . ( - 35 )   =   701   >   0

Theo hệ thức Vi-et, phương trình có hai nghiệm x1; x2 thỏa mãn:

x 1 + x 2 = − b / a = 1 / 5 x 1 ⋅ x 2 = c / a = − 35 / 5 = − 7

c)  8 x 2   –   x   +   1   =   0

Có a = 8 ; b = -1 ; c = 1

Δ   =   b 2   –   4 a c   =   ( - 1 ) 2   –   4 . 8 . 1   =   - 31   <   0

Phương trình vô nghiệm nên không tồn tại x1 ; x2.

d)  25 x 2   +   10 x   +   1   =   0

Có a = 25 ; b = 10 ; c = 1

Δ   =   b 2   –   4 a c   =   10 2   –   4 . 25 . 1   =   0

Khi đó theo hệ thức Vi-et có:

x 1 + x 2 = − b / a = − 10 / 25 = − 2 / 5 x 1 x 2 = c / a = 1 / 25

16 tháng 4 2017

Theo định lý Vi-et ta có: phương trình a x 2   +   b x   +   c = 0 có hai nghiệm x 1 ;   x 2  thì: Giải bài 60 trang 64 SGK Toán 9 Tập 2 | Giải toán lớp 9

Ta sử dụng một trong hai biểu thức trên để tìm nghiệm còn lại.

Ở bài giải dưới đây ta sẽ sử dụng điều kiện: Giải bài 60 trang 64 SGK Toán 9 Tập 2 | Giải toán lớp 9

(Các bạn có thể làm cách 2 sử dụng điều kiện Giải bài 60 trang 64 SGK Toán 9 Tập 2 | Giải toán lớp 9 ).

Giải bài 60 trang 64 SGK Toán 9 Tập 2 | Giải toán lớp 9

d)  x 2   -   2 m x   +   m   -   1   =   0   ( 1 )

Vì x 1   =   2  là một nghiệm của pt (1) nên:

2 2   -   2 m . 2   +   m   -   1   =   0

⇔ 4- 4 m+ m – 1 = 0

⇔ 3- 3m = 0

⇔ m = 1

Khi m = 1 ta có: x 1 . x 2   =   m   -   1  (hệ thức Vi-ét)

⇔ 2 . x 2   =   0   ( v ì   x 1   =   2   và m = 1)

⇔   x 2   =   0