Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2-6x-1=0\)
Theo Vi - ét, ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{6}{2}=3\\x_1x_2=\dfrac{c}{a}=-\dfrac{1}{2}\end{matrix}\right.\)
Ta có :
\(A=\dfrac{x_1-2}{x_2-1}+\dfrac{x_2-2}{x_1-1}\)
\(=\dfrac{\left(x_1-2\right)\left(x_1-1\right)+\left(x_2-2\right)\left(x_2-1\right)}{\left(x_2-1\right)\left(x_1-1\right)}\)
\(=\dfrac{x_1^2-x_1-2x_1+2+x_2^2-x_2-2x_2+2}{x_1x_2-\left(x_1+x_2\right)+1}\)
\(=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2-3\left(x_1+x_2\right)+4}{x_1x_2-\left(x_1+x_2\right)+1}\)
\(=\dfrac{3^2-2.\left(-\dfrac{1}{2}\right)-3.3+4}{-\dfrac{1}{2}-3+1}\)
\(=-2\)
\(x\left(3x-4\right)=2x^2+1\)
\(\Leftrightarrow3x^2-4x-2x^2-1=0\)
\(\Leftrightarrow x^2-4x-1=0\)
Theo Vi - ét, ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=4\\x_1x_2=\dfrac{c}{a}=-1\end{matrix}\right.\)
Ta có :
\(A=x_1^2+x_2^2+3x_1x_2\)
\(=\left(x_1+x_2\right)^2-2x_1x_2+3x_1x_2\)
\(=\left(x_1+x_2\right)^2+x_1x_2\)
\(=4^2-1\)
\(=16-1\)
\(=15\)
\(=x_1^2+x_2^2-2x_1x_2-x_1^2+\dfrac{1}{2}x_1\)
\(=x_2^2-2x_1x_2+\dfrac{1}{2}x_1\)
2x2-5x + 2m - 1 = 0 ( 1)
Dental = (-5)2 - 4*2*( 2m - 1)
= 25 - 16m + 8
= 33 - 16m
Phương trình (1) có 2 nghiệm phân biệt khi :
33 - 16m > 0
- 16m >-33
m < 33/16
Theo hệ thức vi-ét ta có:
x1 + x2 = -b/a = 5/2
x1x2 = c/a =2m - 1/2
Theo bài ch0 :1/x1 + 1/x2 = 5/2
<=>2( x2 + x1 ) = 5x1x2
<+> 2( 5/2 ) + 55 ( 2m - 1 ?2
<+> 5 = 10m -5?2
<+>
<=>2( x2 + x1 ) = 5x1x2
<=> 2( 5/2 ) = 5 ( 2m - 1 /2 )
<=> 5 - 10m + 5/2 = 0
<=> 10 - 20m + 5 = 0
<=> 15 - 20m = 0
<=> -20m = -15
<=> m = 5/4
Vậy m = 5/4 thỏa mãn yêu cầu bài toán
( mình học khá nên chắc không đúng 100 %, có sai xót thì mng sửa hộ ạ ^^ )
a) 2 x 2 – 17 x + 1 = 0
Có a = 2; b = -17; c = 1
Δ = b 2 – 4 a c = ( - 17 ) 2 – 4 . 2 . 1 = 281 > 0 .
Theo hệ thức Vi-et: phương trình có hai nghiệm x1; x2 thỏa mãn:
x 1 + x 2 = − b / a = 17 / 2 x 1 x 2 = c / a = 1 / 2
b) 5 x 2 – x – 35 = 0
Có a = 5 ; b = -1 ; c = -35 ;
Δ = b 2 – 4 a c = ( - 1 ) 2 – 4 . 5 . ( - 35 ) = 701 > 0
Theo hệ thức Vi-et, phương trình có hai nghiệm x1; x2 thỏa mãn:
x 1 + x 2 = − b / a = 1 / 5 x 1 ⋅ x 2 = c / a = − 35 / 5 = − 7
c) 8 x 2 – x + 1 = 0
Có a = 8 ; b = -1 ; c = 1
Δ = b 2 – 4 a c = ( - 1 ) 2 – 4 . 8 . 1 = - 31 < 0
Phương trình vô nghiệm nên không tồn tại x1 ; x2.
d) 25 x 2 + 10 x + 1 = 0
Có a = 25 ; b = 10 ; c = 1
Δ = b 2 – 4 a c = 10 2 – 4 . 25 . 1 = 0
Khi đó theo hệ thức Vi-et có:
x 1 + x 2 = − b / a = − 10 / 25 = − 2 / 5 x 1 x 2 = c / a = 1 / 25
Theo định lý Vi-et ta có: phương trình a x 2 + b x + c = 0 có hai nghiệm x 1 ; x 2 thì:
Ta sử dụng một trong hai biểu thức trên để tìm nghiệm còn lại.
Ở bài giải dưới đây ta sẽ sử dụng điều kiện:
(Các bạn có thể làm cách 2 sử dụng điều kiện ).
d) x 2 - 2 m x + m - 1 = 0 ( 1 )
Vì x 1 = 2 là một nghiệm của pt (1) nên:
2 2 - 2 m . 2 + m - 1 = 0
⇔ 4- 4 m+ m – 1 = 0
⇔ 3- 3m = 0
⇔ m = 1
Khi m = 1 ta có: x 1 . x 2 = m - 1 (hệ thức Vi-ét)
⇔ 2 . x 2 = 0 ( v ì x 1 = 2 và m = 1)
⇔ x 2 = 0
Lần sau bạn viết latex giúp mình nha, ghi vậy mình không biết biểu thức A cái nào trước sau.
Sao không lần này luôn vậy =)))