Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x . 4 = 128
2x = 128 : 4
2x = 32
x = 32 : 2
x = 16
b)x . 17 = x
=> x = 0
\(22^{33}=\left(11.2\right)^{33}=11^{33}.2^{33}=11^{22}.11^{11}.8^{11}\)
\(33^{22}=\left(11.3\right)^{22}=11^{22}.3^{22}=11^{22}.9^{11}\)
Dễ thấy 1111 > 911 do đó 2233 > 3322
Các bạn giúp mình mình cho 2 tick nha....Bài ít mong làm nhanh.....
\(3^{20}=\left(3^2\right)^{10}=9^{10}\)
\(2^{30}=\left(2^3\right)^{10}=8^{10}\)
Ta có\(9>8\Rightarrow9^{10}>8^{10}\Rightarrow3^{20}>2^{30}\)
Vậy\(3^{20}>2^{30}\)
\(\Rightarrow ab=a+b\)
\(\hept{\begin{cases}a\cdot b=n^2\\a+b=n^2\end{cases}\Rightarrow a;b\ge0}\)
Áp dụng bất đảng thức Cauchy cho 2 số không âm a và b :
\(a+b\ge2\sqrt{ab}\)
Dấu = xảy ra khi và chỉ khi a = b
\(n^2\ge2\sqrt{n^2}\)
\(n^2-2n\ge0\)
Dấu = xảy ra :
\(\Leftrightarrow n^2-2n=0\)
\(n\cdot\left(n-2\right)=0\)
\(\orbr{\begin{cases}n=0\\n-2=0\end{cases}}\)
\(\orbr{\begin{cases}n=0\\n=2\end{cases}}\)
\(\orbr{\begin{cases}a=b=0\\a=b=2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}ab=0\cdot0=0\\ab=2\cdot2=4\end{cases}}\)
5566>6655
https://olm.vn/hoi-dap/question/62924.html
vào đây xem nhé