K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 3 2021

\(AC=\sqrt{AB^2+BC^2-2AB.BC.cosB}=\sqrt{9^2+12^2-2.9.12.cos60^0}=3\sqrt{13}\)

4 tháng 4 2018

Chọn A.

5 tháng 10 2017

b

5 tháng 10 2017

Chọn b

19 tháng 3 2022

ĐKXĐ: -21\(\le x\le\)21

Đặt \(\left\{{}\begin{matrix}\sqrt{21+x}=a\\\sqrt{21-x}=b\end{matrix}\right.\left(a,b\ge0\right)\) (a\(\ne\)b)

Ta có \(\left\{{}\begin{matrix}21+x=a^2\\21-x=b^2\end{matrix}\right.\) =>\(\left\{{}\begin{matrix}a^2+b^2=42\\a^2-b^2=2x\end{matrix}\right.\)

Pt đã cho trở thành \(\dfrac{a+b}{a-b}=\dfrac{a^2+b^2}{a^2-b^2}\)

<=> \(\left(a+b\right)^2\)(a-b)=(\(a^2+b^2\))(a-b)

<=> (a-b)2ab=0

\(\text{​​}\text{​​}\left[{}\begin{matrix}a=b\left(loai\right)\\a=0\left(tm\right)\\b=0\left(tm\right)\end{matrix}\right.\)

Thay vào ta tìm dc S=\(\left\{21,-21\right\}\)

NV
24 tháng 2 2020

Chắc dưới mẫu bạn ghi nhầm căn đầu tiên

ĐKXĐ: \(-21\le x\le21;x\ne0\)

\(\Leftrightarrow\frac{\left(\sqrt{21+x}+\sqrt{21-x}\right)^2}{21+x-21+x}=\frac{21}{x}\)

\(\Leftrightarrow\frac{42+2\sqrt{21^2-x^2}}{2x}=\frac{21}{x}\)

\(\Leftrightarrow\sqrt{21^2-x^2}=0\)

\(\Rightarrow x=\pm21\)

26 tháng 2 2020

bạn ơi, sao bước 2 làm thế nào mà đc bước 3 vậy ạ